

Calculs du bruit du F-35A

Dr Beat Schäffer Empa, département Acoustique / Contrôle de bruit, Dübendorf

Équipe de projet Empa: Beat Schäffer, Mateja Gligorijevic, Thomas Ramseier, Stefan Schalcher, Stefan Schucker, Jean Marc Wunderli

Berne, 5 – 7 décembre 2023

Sommaire

- Toile de fond Calculs de bruit du trafic aérien
- Procédures de calcul
 - Valeurs d'entrée considérées
 - Principales différences sonAIR—FLULA2
- Avions de combat
 - Comparaison acoustique F-35A et F/A-18
- Calculs de bruit: résultats
 - Exploitation de jets future vs actuelle
 - Influence du programme de calcul de bruit du trafic aérien
 - Exploitation globale future (avec le F-35A) vs actuelle (avec F/A-18 & F-5)

■ Toile de fond – Calculs du bruit

Toile de fond

Calculs de bruit du trafic aérien:

- Conformément à l'ordonnance sur la protection contre le bruit (OPB, annexe 8) et au Manuel du bruit aérien (publication de l'OFEV/de l'OFAC/du SG-DDPS)
- L'Office fédéral de l'environnement recommande des méthodes de calcul appropriées (OPB art. 38 al. 2)
- Programme Empa FLULA2, l'un des trois programmes recommandés de calcul du bruit du trafic aérien
 - Programme Best Practice pour les calculs d'exposition annuelle
- Le nouveau programme de l'Empa sonAIR doit venir remplacer FLULA2
 - Programme Next Generation pour vols individuels et expositions annuelles, calculs plus détaillés et plus précis
- sonAIR fournira l'exposition officielle de la prévision 2035 (exploitation F-35A)
 - → Calculs comparatifs sonAIR vs FLULA2

Procédures de calcul

Valeurs d'entrée considérées

Inputs Forces aériennes/armasuisse

- Composition de flotte (types d'avions pour les catégories jets, avions à hélices, hélicoptères)
 - Regroupement en cas de modèles d'émissions manquants
- Géométries de vol
 - Traînées par couloir aérien
 - Profils de vol (évolution altitude et vitesse, phase de vol)
- Chiffres de mouvements aériens spécifiques aux types & aux trajectoires

Autres inputs

- Modèles d'émissions spécifiques aux types d'avions (décollage, atterrissage; régime moteur)
- Aérodrome: longueur des pistes et position
- Terrain E
- Occupation du sol (selon le programme)

Exemple décollage MIL 04 F-35A EMM: traînées de vol, trajectoire *Footprint* ($L_{AF} = 105-120 \text{ dB}$)

Comparaison de sonAIR et FLULA2

Points communs

- Modèles d'émissions pour le décollage (MIL / MAX) et atterrissage, sur la base de mesures à Payerne (F-35A, I
- Simulation de vol selon la procédure de pas de temps

Time[s]

Développements de sonAIR

- Séparation émission et propagation
- Caractéristique de rayonnement tridimensionn.
- Modélisation explicite de l'effet Doppler → dépendance en matière de vitesse
- Modèle de propagation détaillé, notamment avec prise en compte de l'occupation du sol et modélisation physique de situations avec incidence rasante
- Calcul spectral, en tierces

Avions de combat

Comparaison acoustique F-35A et F/A-18

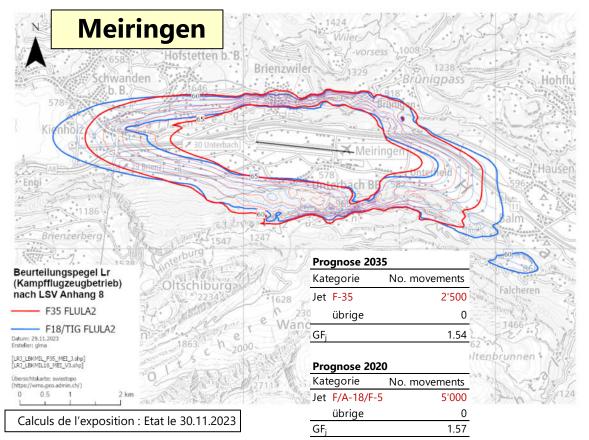
- Bases de données:
 - F-35A: mesures NAC Empa 2019, aérodrome PAY
 - F/A-18: mesures Empa 1997, aérodrome PAY
- Emissions: indicateurs acoustiques (survol standardisé, h = 1000 pieds, v = 160nœuds)

LAE	Start MIL	Start MAX	Landung
F-35	118.8	122.5	101.5
F/A-18	116.4	120.6	102.0
ΔL AE	+2.4	+1.9	-0.4

Immissions: y c. propagation & exploitation (p. ex. profils de vol)

Verfahren	Start			Landung	Rollen
Gruppierung	in Pisten- richtung quer zur Pisten- richtung	Alle Messpunkte	In Pisten- richtung		
Messpunkte	2,4,7,8,9,10	5,6,11	2,4,5,6,7,8,9,10,11	2,4,7,8,9,10	
F-35A	+ 3dB(A)	+4 dB(A)	+ 3dB(A)	+ 0 bis1 dB(A)	+5 dB(A)

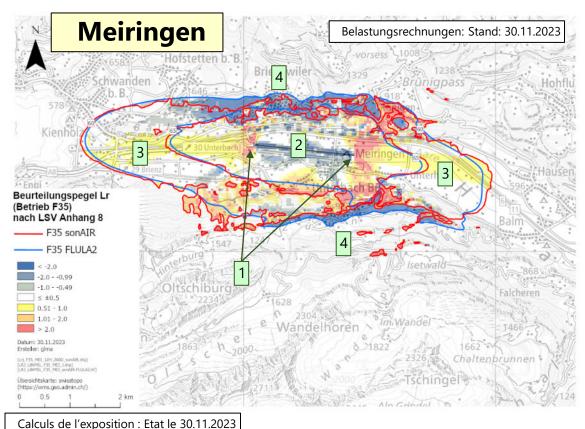
Tabelle 3: Vergleich des F-35A mit der Schweizer F/A-18



Calculs de bruit: résultats

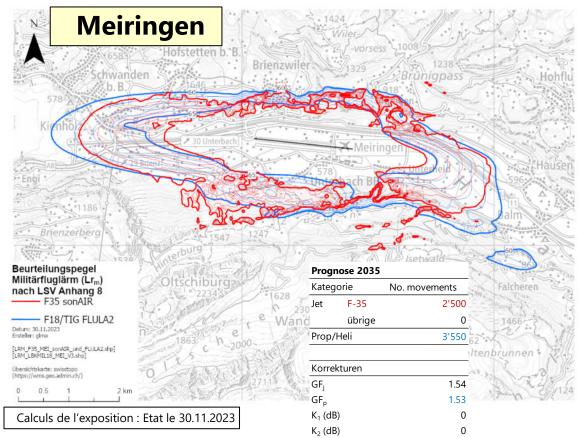
- Exploitation de jets F-35A vs F/A-18 & F-5
- Exploitation de jets F-35A, calcul sonAIR vs FLULA2
- Exploitation globale prévisions 2035 (F-35A) vs actuellement (F/A-18 & F-5)

Résultats—F-35A vs. F/A-18 & F-5



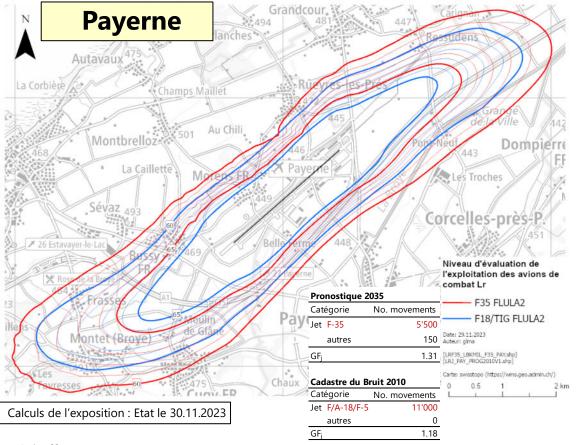
- Mouvements réduits de moitié (faible proportion de F-5), même GFj
- Augmentation des émissions sonores du F-35A compensée par l'occupation.
- Près de la piste : L'exposition reste à peu près la même
- Zone éloignée sous les routes aériennes : Diminution du Lr en raison des profils plus raides du F-35A (MAX de décollages).
 - → Globalement, diminution des nuisances dues aux jets

Résultats—F-35A sonAIR vs. FLULA2



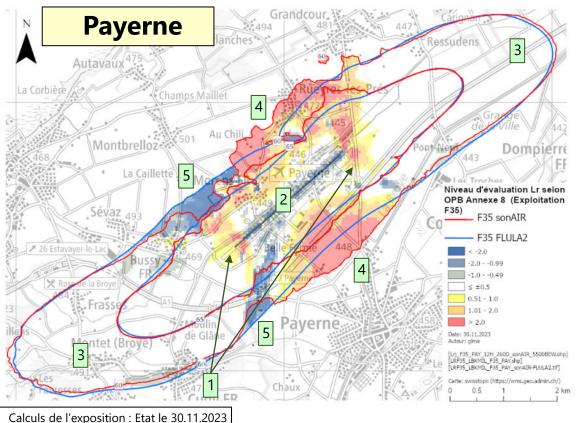
- Seuils de piste : sonAIR plus fort vers l'arrière (Doppler)
- 2. Piste : sonAIR moins bruyant (réflexions sur le sol)
- 3. Sous les couloirs aériens principaux : sonAIR légèrement plus bruyant (directivité latérale en léger virage)
- Effets d'ombrage sur les terrains en pente
- Son direct : sonAIR et FLULA2 très similaires
- Différences locales dues à l'occupation du sol (sonAIR), par ex. zones urbaines, forêts
- → Lr globalement similaire, mais courbes (réalistes) plus instables sonAIR (Terrain)

Résultats — Niveau d'évaluation Lr (exploitation globale)



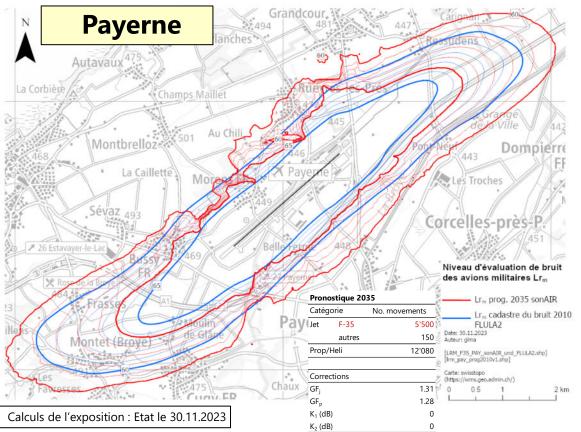
- Exploitation globale militaire Lr correspond environ à Lr_j (domination acoustique)
- Lr similaire à proximité de l'aérodrome, dans prolongement de piste avec distance croissante Lr inférieure dans la prévision 2035 à celle de la prévision 2020
- Globalement, généralement exposition au bruit aérien inférieure dans la prévision 2035 par rapport à 2020

Résultats—F-35A p/r au F/A-18 & F-5



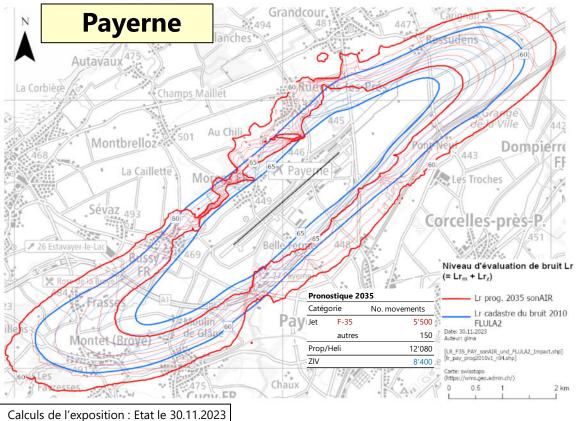
- Nb. de mouvements divisés par deux (grande proportion F-5), GF_i plus élevé (→ ΔLr = +0.5 dB)
- Émissions de bruit plus élevées du F-35A & plus grand GF_j, partiellement compensé par les mouvements
- Influence des profils de vol (altitude, vitesse) F-35A vs. F/A-18
 - → Au total: augmentation de l'exposition au bruit aérien par jets

Résultats—F-35A sonAIR p/r à FLULA2



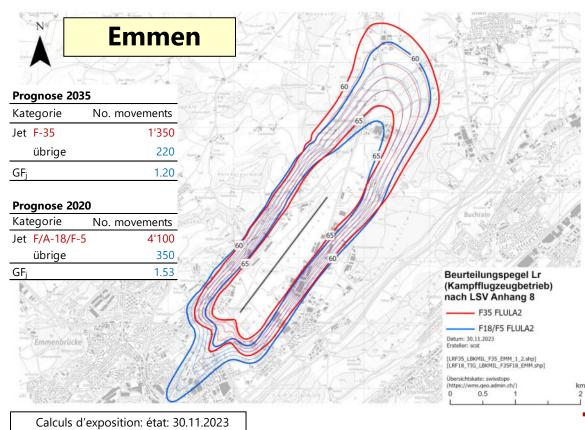
- Seuils de piste : sonAIR plus bruyant vers l'arrière (Doppler)
- 2. Piste : sonAIR moins bruyant (réflexions sur le sol)
- 3. En dessous des couloirs aériens principaux : exposition similaire
- Incidence sonore rasante : sonAIR nettement plus bruyant (> 2 dB)
- 5. Différences locales dues à l'occupation du sol (sonAIR), p.ex. zone d'habitation, forêt
- Propagation directe : sonAIR et FLULA2 très similaire
- → Exposition globalement similaire (différences locales), mais courbes (réalistes) plus irrégulières de sonAIR

Résultats—Niveau d'évaluation Lr_m (exploit. globale mil.)



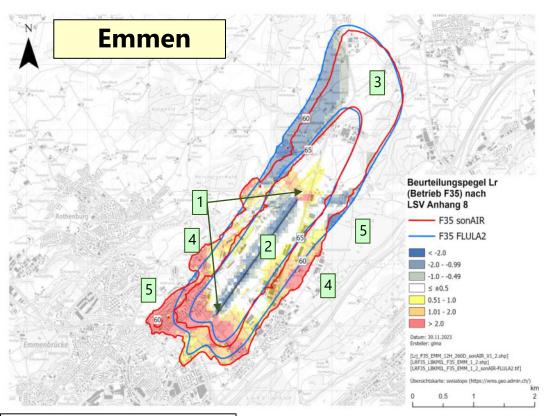
- Exploitation globale militaire Lr_m correspond approximativement à Lr_j (acoustiquement dominant), malgré le nombre élevé de mouvements d'avions à hélices et hélicoptères
- → Au total, augmentation de l'exposition au bruit aérien dans le pronostique 2035 comparé au cadastre de bruit 2010

Résultats—Niveau d'évaluation Lr (Lr_m + Lr_z)



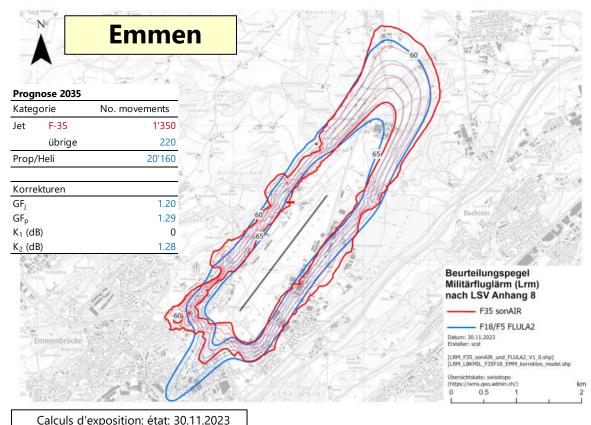
- Exploitation globale Lr très similaire à l'exploitation militaire Lr_m (acoustiquement dominant)
- → Au total: augmentation de l'exposition au bruit aérien dans le pronostique 2035 comparé au cadastre de bruit 2010

Résultats — F-35 vs F/A-18 & F-5



- Mouv. réduits d'environ deux tiers (part importante F-5), FP_j inférieur (→ ΔLr = -1 dB)
- Émissions sonores supérieures du F-35 compensées par mouv.
 & FP_i
- Décollages F-35 vers le sud: nettement moins bruyants (profils à pente plus raide: décollages MAX)
- Décollages vers le nord: plus bruyants (part inférieure de voltes)
- Latéralement à la piste: niveau sonore similaire
- → Globalement, nette diminution de l'exposition de jets au sud et augmentation au nord

Résultats — F-35 sonAIR vs FLULA2



Calculs d'exposition: état: 30.11.2023

- 1. Seuils de pistes: sonAIR plus bruyant vers l'arrière (Doppler)
- 2. Piste: sonAIR moins bruyant (réflexions du sol)
- 3. Sous les principaux couloirs aériens: exposition similaire; sonAIR moins bruyant au nord (dispersion latérale dans virage prononcé)
- 4. Incidence rasante: sonAIR plus bruyant
- Différences locales en raison de l'occupation du sol (sonAIR), p. ex. périmètre d'urbanisation, forêt
- Son direct: sonAIR et FLULA2 souvent très similaires
- → Globalement Lr similaires, mais courbes plus irrégulières (de façon réaliste) sonAIR

Résultats — Niveau d'évaluation Lr (exploitation globale)

- Exploitation globale militaire Lr correspond environ à Lr_j (domination acoustique), en dépit de chiffres de mouvements élevés des hélicoptères/avions à hélices
- Les différences dépendent fortement de la région autour de l'aéroport
 - → Globalement, diminution de l'exposition au bruit au sud et augmentation au nord dans la prévision 2035 par rapport à 2020

Récapitulatif

- Prévision 2035 vs état actuel:
 - MEI: globalement, souvent diminution de l'exposition au bruit du trafic aérien
 - PAY: globalement augmentation de l'exposition au bruit du trafic aérien
 - EMM: diminution de l'exposition au bruit du trafic aérien au sud et augmentation au nord
- Changement simultané modèle de simulation & type d'avion complexe
 - Modification simultanée de plusieurs variables
 - Les effets peuvent s'amplifier ou se compenser mutuellement
- sonAIR: calcul plus exact que pour FLULA2
 - Modélisation des sources (3D) → vol virage
 - Propagation → incidence rasante
- FLULA2 et sonAIR fournissent globalement des résultats comparables
 - Bonne concordance dans les situations de propagation simples
- B. Schäffer, Empa Différences locales dans les situations de propagation plus complexes