
Auditing the Swiss Post E-voting System:
An Architectural Perspective

Bryan Ford*

April 4, 2022

Contents

1 Overview of the audit 1
1.1 Methodology 2
1.2 Important caveats 2
1.3 Key reference documents 2
1.4 Overview of observations 2

2 General architectural concerns 4
2.1 Architecture documentation issues 4
2.2 Limited application of trust splitting . . . 5
2.3 Control component independence 7
2.4 Auditor independence 10
2.5 Message-level authentication and in-

tegrity protection design 10
2.5.1 The benefits, and risks, of ab-

straction 11
2.5.2 Decrypted results versus verified

results 12

3 E-voting protocol (Scope 1) 14
3.1 Usage guidance on ballot configuration . 14
3.2 Write-ins and individual verifiability . . . 16

4 Software (Scope 2) 18

*The author is a faculty member of EPFL, the École Polytech-
nique Fédérale de Lausanne. The work described in this report was
performed in the author’s individual capacity, however, as an ancilliary
activity governed by LEX 4.1.1 and the Ordinance on the EPF faculty
(RS 172.220.113.40)). It should go without saying that all opinions ex-
pressed in this report are solely the author’s, and do not in any way reflect
institutional positions of or endorsements by EPFL or the ETH domain.

5 Infrastructure (Scope 3) 18
5.1 Voter authentication second factor 18

5.2 Physical access to control components . . 19

5.3 Reproducible builds 19

5.3.1 Are the builds independently re-
produced? 19

5.3.2 Are the reproducible builds those
actually run? 20

6 Conclusion 20

1 Overview of the audit

Switzerland is one of the few countries globally that has a
national program for electronic voting (E-voting), which
has been evolving in several stages for well over a decade.
For the past several years, the program’s most recent stage
has focused on introducing strong cryptographic verifi-
ability into the system, together with security features
such as trust splitting and a software implementation open
to public inspection. Although multiple system providers
have participated in the E-voting program in the past, cur-
rently the only active provider is the SwissPost.

This report represents the author’s analysis of the Swiss
Post’s E-voting system as part of an audit that commenced
in 2021. This author’s primary role in this audit was to ex-
amine the overall architecture of the system from a high-
level systems-security perspective, and to study how all
the elements of the system fit together to implement an
“end-to-end” electronic voting process.

1

https://www.epfl.ch/about/overview/wp-content/uploads/2019/09/4.1.1_dir_gestion_conflits_interet_an.pdf
http://www.admin.ch/ch/f/rs/172_220_113_40/index.html

1.1 Methodology
The author formally participated in all three “scopes” of
the audit: namely of (1) the cryptographic protocol, (2) the
software implementation, and (3) the infrastructure. How-
ever, the author never attempted, nor would have been
able to, perform a complete, detailed audit of all three of
these scopes. In particular, the author has attempted nei-
ther to verify all the details of the protocol and crypto-
graphic proofs in scope 1, nor to examine the system’s
source code thoroughly in scope 2, nor to check every as-
pect of the E-voting infrastructure for compliance in scope
3. The author’s participation in all three scopes served in-
stead to feed the high-level architectural perspective this
report takes with relevant information from all scopes and
aspects of the system, and to examine the system across
audit scopes and levels of abstraction.

In accordance with this focus on taking a high-level
architectural perspective, this report starts by examining
broad architectural issues and concerns in Section 2. Sub-
sequent sections focus on observations that fit primarily
into particular audit scopes.

1.2 Important caveats
Several important caveats apply to this report:

• The report may well contain accidental mistakes or
incorrect judgments based on the author’s incom-
plete understanding of the system in all its details.

• The author’s analysis is substantially based on ref-
erence documents summarized below, all of which
were working drafts under continuing evolution. The
observations in this report might, or might not, be
valid with respect to other, older or newer versions
of the reference documents.

• The author used the English translations of the Ordi-
nance on Political Rights (PoRO) and the Ordinance
on Electronic Voting (OEV) as reference points. En-
glish is not one of the official languages of Switzer-
land for which these Ordinances will be legally bind-
ing even when finalized. Thus, errors and misunder-
standings could result from translation issues.1

1The English translations of the PoRO and OEV point out: “English
is not an official language of the Swiss Confederation. This translation
is provided for information purposes only and has no legal force.”

1.3 Key reference documents

The analysis in this report relies significantly on the key
documents listed in Table 1, and was performed using the
specific versions of the documents listed.

1.4 Overview of observations

Switzerland’s E-voting program, and the SwissPost E-
voting system in particular, have been evolving and un-
der development for well over a decade. The current sys-
tem now under audit represents a snapshot in time on that
long-term evolutionary path. The current generation of the
system under audit takes many important and valuable
measures for security and transparency that are to this au-
thor’s knowledge unprecedented or nearly-unprecedented
among governmental E-voting programs worldwide. At
a technical level, these measures include individual and
universal verifiability mechanisms, trust-splitting of crit-
ical functions across four control components, the incor-
poration of an independent auditor role in the E-voting
process, and the adoption of a reproducible build process
for the E-voting software. At a broader process level, the
opening of the system’s specifications and source code to
public review, the establishment of a bug bounty program
for the system, and the regular involvement of indepen-
dent, international experts in examining both the E-voting
program as a whole and this E-voting system in partic-
ular, similarly represent unprecedented levels of trans-
parency and rigor. The author sees ample evidence overall
of both a system and a development process represent an
exemplar that other governments worldwide should exam-
ine closely, learn from, and adopt similar state-of-the-art
practices where appropriate.

Similarly as a snapshot in time along a long-term de-
velopment path, the current system under audit is still
far from the ideal system that the author of this report –
or perhaps any expert well-versed in this technology do-
main – would in principle like to see. Some issues the au-
thor considers significant and worrisome are already well-
known but currently placed explicitly outside the system’s
scope or threat model: for example, the current system’s
reliance on a trusted and fully-centralized printing author-
ity, and its exclusion of coercion or vote-buying as a risk
to be taken seriously and potentially mitigated. This report
will not spend any significant time discussing these issues

2

Document name Source Version Date
Ordinance on Political Rights (PoRO) Swiss Confederation 28 April 2021
Federal Chancellery Ordinance on Electronic Voting (OEV) Swiss Confederation 28 April 2021
SwissPost Voting System architecture document SwissPost v0.9.1 17 August 2021
Swiss Post Voting System specification SwissPost v0.9.7 15 October 2021
Protocol of the Swiss Post Voting System SwissPost 0.9.11 15 October 2021
Operational Guide: E-Voting SwissPost V02.02 3 September 2021
Infrastructure whitepaper of the Swiss Post e-voting system SwissPost 15 November 2021

Table 1: Key documents referenced in this report.

precisely because they are both well-known already and
technically outside of the audit’s scope.

In other respects, the current system incorporates im-
portant security and transparency principles that represent
important steps forward, but which are not yet embodied
as completely or systematically in the system’s architec-
ture, design, or implementation as they could be and ide-
ally should be. This report will place much more emphasis
on examining these areas, especially in Section 2 focusing
on the system’s overall architecture. In particular:

• Explicit documentation of the architecture’s security
principles and assumptions, and how the concrete
system embodies them, is still incomplete or unclear
in many respects (Section 2.1).

• The architecture’s trust-splitting across four control
components strengthens vote privacy, but does not
currently strengthen either end-to-end election in-
tegrity or availability as would be ideal (Section 2.2).

• While the system currently takes many important
measures to ensure the critical property of indepen-
dence between control components, other desirable
measures are not yet in place (Section 2.3).

• The architecture critically relies on an independent
auditor for universal verifiability, but the measures
taken to ensure the auditor’s independence appear in-
complete at least in documentation (Section 2.4).

• While the system’s abstract cryptographic protocol
is well-specified and rigorously formalized, the se-
curity of the lower-level message-based interactions
between the critical devices – especially the interac-
tions involving offline devices – do not yet appear to
be fully specified or analyzed (Section 2.5).

While this report focuses primarily on architecture-
level issues such as those above, it also identifies and dis-
cusses several issues the author identified that are largely
specific to one of the three audit scopes: E-voting proto-
col (Section 3), software implementation (Section 4), and
E-voting infrastructure (Section 5).

Some of the issues this report identifies – especially
those of incomplete or unclear documentation – should be
readily fixable at moderate cost in the near future. Some
of the other highlighted issues, however, are more com-
plex and involve difficult cost/benefit tradeoffs. Address-
ing some of these issues may involve significantly more
development time and financial investment, and hence
may be infeasible to implement in the current-generation
system. That is, some of the additional measures this re-
port recommends are most likely feasible only in another
major generational redesign of the E-voting architecture
and system, perhaps requiring another 5–10 years of con-
tinued investment and development. These observations
are made again in the recognition that the current system
represents only a snapshot in time within a long-term evo-
lutionary path. The intent is to point out areas that could
and should be improved not just in the current-generation
system but in future E-voting program generations.

The author did not identify any critical security vul-
nerabilities in the current system that represent clear and
uncontestable violations of the goals, assumptions, and
threat model likewise laid out by the current-generation
system. The author hopes that the major issues discussed
by this report can and will be addressed substantially,
sooner or later, at least before the E-voting system is de-
ployed for unlimited use with the potential for becoming
the predominant voting channel in Switzerland (as postal
voting is predominant now). However, it is also clear that

3

the ideal E-voting system will in practice never be de-
veloped except through a long-term, continuous invest-
ment in improving, refining, evaluating, and periodically
redesigning the system – and this required long-term in-
vestment is unlikely to be maintainable if the system is
not usable and providing some value in the meantime.

Alternative voting technologies, such as the postal vot-
ing approach currently predominant in Switzerland, carry
significant systemic risks of their own [3]. A complete and
stagnant reliance on today’s legacy voting systems could
lead to a more-hurried adoption of less-mature and more-
risky digital methods, down the road, when convenience-
driven adoption pressures might become irresistible. Rec-
ognizing these complex realities, together with the fact
that the current system – imperfect as it may be in many
ways – embodies and often leads the state-of-the-art glob-
ally in the security and transparency measures taken, the
author finds no clear evidence that the current system
should not be used in a cautious, experimental, “safety-
first” fashion, by a limited population of Swiss voters with
the greatest need for the advantages of E-voting.

2 General architectural concerns
This section focuses broadly on the overall architecture of
the SwissPost E-voting system. Beyond merely perform-
ing a “compliance check” between the SwissPost system
design and the letter of the relevant draft regulations (the
PoRO and OEV), this section raises concerns and dis-
cusses risks and tradeoffs more generally based on the
author’s understanding and judgment of the basic require-
ments and state-of-the-art practices applicable to E-voting
systems in general.

2.1 Architecture documentation issues
The primary high-level architecture specification – titled
“SwissPost Voting System architecture document” – is
useful in understanding the “big picture” of the system
but is currently missing substantial important information,
and is not fully aligned with the other key documents.

Architecture overview: The document is missing at the
start a clear description of the key components and roles
- human, organizational, and electronic – comprising the

system, what their respective basic purposes are, and how
they relate to and interact with each other. A block dia-
gram figure showing all the relevant entities and their re-
lationships would be helpful. Section 3.1, titled “Business
Context”, includes a list of components, but mixes in dis-
cussions of requirements and threat model, which are also
important but should be separated for clarity.

The current list is also incomplete, and not fully aligned
with the components and roles described in the system’s
other key documents. For example, the list omits the Ad-
ministration Board, mentioned briefly elsewhere but never
defined. The list also omits the critical Setup Component
that features prominently in the System Specification and
Protocol documents, as well as the other critical canton-
operated computers discussed in the Operational Guide
(e.g., Synchronization Computer and Decryption Com-
puter).

Usage model: The architecture document could bene-
fit from a clear high-level summary of how it is used:
i.e., the full “workflow” it supports including configuring
an election, starting it, collecting votes, through closing
and finalising an election. Further, the architecture doc-
ument should summarize – or at least point to more in-
formation elsewhere – about what precise kinds of elec-
tions, ballots, and voter selections the architecture is (or
is not) designed to support: e.g., yes/no or multiple-choice
questions, single-seat and multi-seat candidate elections,
write-in candidate choices, etc. Is a voter required to an-
swer all questions on a ballot, or can voters abstain or
choose no answer to some questions? In multi-seat elec-
tions, can users choose the same candidate more than
once? How are ballot formats configured in each of these
cases? Lack of clear definition about how a critical system
is and is not intended to be used can easily lead to subtle
security risks, such as those discussed later in Section 3.1.

Security architecture: The architecture is missing a
clear and well-marked description of the system’s over-
all security architecture. For example, what are the pre-
cise security goals and security properties that the archi-
tecture should achieve? In what real-world context or un-
der what conditions is the architecture expected to remain
secure? Which roles and devices are required to be in-
dependently managed (e.g., control components, auditors

4

and their verification computers), and in what ways is this
independence expected to be assured operationally? As
Section 2.5 discusses in more detail, the cryptographic
security proofs in the Protocol specification cover only
the high-level, abstract protocol and not the lower-level,
concrete implementation in terms of messages or man-
ual data transfers between devices. The system needs at
least a clear summary of the system’s “top-to-bottom” and
“end-to-end” security architecture, not just a proof of the
high-level abstract cryptographic protocol.

Threat model definition: While the document does
discuss threat model in terms of which components are
assumed to be “trustworthy” or “untrustworthy”, this de-
scription of the system’s assumptions is imprecise, not
discussing for example what critical security properties
the components are expected to satisfy – i.e., what ex-
actly are they trusted for, and what are they not trusted
for? What classes of threats and adversarial capabilities is
the system expected to be able to withstand, what classes
of adversarial capabilities are considered out of scope, and
what are the main justifications for considering this threat
model suitable for E-voting in Switzerland?

Security analysis: Finally, although this document is
not the appropriate place for detailed cryptographic
proofs, it could nevertheless benefit from an informal but
clear high-level security analysis section, describing from
a “big picture” perspective how the system’s components
and their behavior fit together to make the overall system
and end-to-end voting process secure. The security anal-
ysis should systematically address all the major identified
threat vectors: e.g., an attacker attempting to tamper with
the election results, an attacker attempting to compromise
voter privacy, an attacker attempting to take the system
offline (denial-of-service attacks).

2.2 Limited application of trust splitting
Switzerland’s E-voting program is unique in having taken
the extremely important and positive step of mandating
trust splitting as a basic part of the E-voting architec-
ture. That is, some of the most security-critical process-
ing operations are divided among multiple control compo-
nents so that no single control component need be trusted

Figure 1: The AIC or CIA triad, representing the three
main protection goals of classic information security:
Availability, Integrity, and Confidentiality.

completely. Given how security-critical voting is to any
democracy in general, and given that we can never realis-
tically expect any single device to be perfectly secure, the
author feels that the lead Switzerland has taken in man-
dating trust splitting is one that should be followed by any
other country deploying or considering deployment of an
E-voting system.

Trust splitting is a particularly powerful technique in
that it can exponentially increase a system’s trustworthi-
ness, in a quantifiable and provable sense, at a moderate,
only multiplicative cost increase. If an individual compo-
nent has a probability p of encountering a relevant failure
or security compromise in a given time period, for exam-
ple, and we split trust across n fully-independent com-
ponents such that the system fails only if all n compo-
nents fail, then the probability of an overall system failure
in the same time period is in principle exactly pn. As a
concrete example, if each individual component has a 1%
failure probability in a year (p = 10−2), then trust split-
ting across four such independent components in princi-
ple reduces the overall system’s failure probability in a
year to 0.000001% (p4 = 10−8). That is, at a moderate
4× multiplicative cost in infrastructure, we obtain an ex-
ponential cost in effective trustworthiness. Many caveats
apply, of course – actual failure probabilities are difficult
to estimate, no set of redundant components are ever fully
indpenedent, etc. – but the basic “exponential benefit at
multiplcative cost” principle and opportunity remains.

Which security properties does trust splitting protect?
There are many different ways in which trust splitting can
actually be embodied in the architecture of a system, how-
ever, with different results and cost/benefit/risk tradeoffs.

5

A basic principle of information security is known as
the AIC or CIA triad: Availability, Integrity, and Con-
fidentiality, the three conceptually-orthogonal security
properties that we generally want any information system
to protect, as illustrated in Fig. 1. Trust splitting can dras-
tically increase a system’s protection in all, or only some,
of these dimensions – but this depends on precisely how
trust splitting is used in the architecture.

The SwissPost E-voting architecture document does
not clearly specify which of the AIC properties the trust-
splitting across control components is or is not intended
to protect, nor does it justify the particular choices the ar-
chitecture makes as to how trust splitting is used.

Trust splitting and Confidentiality: We can clearly in-
fer from the system’s design (and from the OEV’s require-
ments) that trust splitting is intended to protect voter pri-
vacy – i.e., the confidentiality of cast votes – beyond the
baseline of a single fully-trusted component managed by
one team. The fact that each of the four mixing control
components (CCMs) – three managed by the SwissPost
and the final one by the cantons – independently shuf-
fles all of the ballots in turn should guarantee that vot-
ers remain anonymous even if all but one CCM is com-
promised. This property, again, represents an important
step forward in public development and deployment of
E-voting systems that is highly commendable. Provided
that all the underlying assumptions and implementation
details hold up (threat model and cryptographic assump-
tions, protocol and software correctness, etc.), the Swiss-
Post E-voting system appears to succeed in providing this
architecturally-enhanced level of privacy protection.

Trust splitting and Availability: The SwissPost E-
voting system’s control components are designed to op-
erate in an n-of-n threshold or “anytrust” model [7], in
which all four must participate and none can be offline
in order for the system as a whole to remain available.
From this fact we can infer that trust splitting is not in-
tended to enhance availability in the SwissPost E-voting
system beyond the availability of the underlying compo-
nents. Protecting availability at architecture level would
require a t-of-n threshold model where t < n, as is typi-
cal of [Byzantine] fault tolerant systems, for example [2].

This lack of availability protection in the architecture’s
use of trust splitting obviously represents a potential risk,
especially since a system with four “anytrust” control
components is in fact technically less protected against
availability failures than would be a similar system with
only one control component. (There are now four criti-
cal servers, in place of just one, whose downtime could
interrupt E-voting in Switzerland.) This risk may well be
justified, however, for example on the grounds that n-of-n
“anytrust” systems are much simpler to design and build
than t-of-n theshold systems, and that perhaps (all of) the
underlying control components are expected to provide
“good enough” overall availability on the basis of their in-
dividual high-availability provisioning and management
by SwissPost. It would be preferable for the E-voting
architecture document to discuss these issues explicitly,
however, and to state clearly if – and why – the architec-
tural trust splitting is not intended to enhance availability.

Trust splitting and Integrity: It is less clear whether
and to what extent the architecture’s trust splitting across
control components is intended to protect the integrity of
the voting process. The architecture document seems to
suggest such an intent, for example in this sentence at the
beginning of section 5.5.1:

The Control Components work together as a
group and participate in all the sensitive opera-
tions defined in the voting protocol to guarantee
its integrity.

More generally, given how fundamentally critical the
results of an election are to the transfer of power in a
democratic country, we might hope and expect a state-
of-the-art E-voting system to bring all available resources
to bear in protecting election integrity. We might hope in
particular that due to its trust splitting across four con-
trol components, the overall probability of election in-
tegrity failure due to a compromise in any one critical
component should be reduced exponentially as in the ideal
cost/benefit analysis sketched above – e.g., reducing a 1%
per-component failure probability to a 0.000001% overall
integrity failure probability as in the earlier example.

The actual Swiss Post E-voting protocol, however, does
not appear to be designed so that the control components
systematically work together to protect the integrity of

6

the voting process, but only to protect its privacy as dis-
cussed above. For example, the mixing control compo-
nents (CCMs) each generate a zero-knowledge proof of
the correctness the shuffle they perform – but none of the
control components ever actually verify any of the proofs
generated by the other control components. Only the sep-
arate auditor(s) are described as verifying these proofs.

The OEV explicitly requires the system to have four
control components, but leaves the number of auditors
unspecified, apparently requiring only one. Further, the
Operational Guide appears to be written under the expec-
tation that there is only one Verification Computer, and
does not mention the auditor role at all (Section 2.4). If
an election indeed has only one auditor, then an attacker
needs to compromise at most two critical devices in order
to manipulate the election results undetectably: namely,
any one control component, who replaces ballots arbitrar-
ily and generates an invalid proof, plus the auditor’s veri-
fier device, which merely pretends to check it and claims
that the the proof it “checked” was valid.

This weakness is probably not a compliance issue, be-
cause the OEV demands in Art. 8 only that the auditor-
checked “proof” remain valid when all but one control
component is compromised, and hence permits this crit-
ical dependence on the (perhaps one and only) auditor’s
trustworthiness.

Nevertheless, this weakness represents a significant
“missed opportunity” in the system’s security architec-
ture. The main development and infrustructure costs of
4-way-redundant trust splitting have already been man-
dated and budgeted as part of the system, but the poten-
tial benefits that could be derived from those costs have
been achieved only partially, for vote confidentiality but
not for election integrity. The four control components al-
ready produce the necessary proofs anyway, and the code
to verify the proofs has likewise already been written and
must be maintained anyway for the auditor(s).

Recommendation: In a more robust mixing workflow,
each of the control components would first check the
shuffle proofs generated by the prior mixing components
(CCMs) in the sequence before performing its own shuf-
fle and generating its shuffle proof. Then, after the last
mixing step, each control component would check all of
the shuffle proofs in the sequence that it hasn’t checked al-

ready, before “signing off” on the collectively-shuffled re-
sult. The signoffs of all control components should be re-
quired before any subsequent steps are taken, either man-
ual or automated, such as the initiation of vote decryption.
In this way, any single control component – i.e., the un-
known CCM assumed to be trustworthy – could protect
integrity throughout the process as robustly and redun-
dantly as the CCMs now protect confidentiality, indepen-
dent of how many auditors there are or their actions.

More generally, proactively checking the correctness
of “everything that was done so far” in the control com-
ponents before starting to perform “the next” operation
is just good defensive security engineering practice, and
may help head off future potential vulnerabilities simi-
lar to the recently-discovered “decryption oracle” issue
#YWH-PGM2323-35.

2.3 Control component independence

Even if the architecture relies on trust splitting across the
control components to protect only confidentiality and not
integrity or availability, as discussed above, it is still im-
portant – and explicitly required by the OEV in Art. 8 –
that the control components be as independent as possi-
ble. Independence ensures that an attacker who somehow
manages to compromise one control component hopefully
has a small probability of being able to exploit the same
weakness to compromise the other control components.

In principle, if each control component is fully-
independent and has a probability p of privacy failure,
then the overall system has the exponentially-smaller
probability p4 of privacy failure, as discussed above in
Section 2.2. At the other extreme, if the control compo-
nents are fully interdependent – that is, not at all indepen-
dent of each other – then a successful (privacy) exploit
against one immediately leads to a successful (privacy)
exploit against the others, so the overall system fails with
exactly the same probability p as the individual failure of
any single control component, yielding no benefit.

Documentation considerations: In practice, of course,
redundant systems of this kind lie somewhere between
these two extremes, achieving some level of independence
but never perfect independence. It is therefore important
that the architecture explicitly address and document the

7

https://gitlab.com/swisspost-evoting/e-voting/e-voting-documentation/-/issues/11

ways in which the control components are – and are not
– expected to be independent in actual operation, and to
justify these choices. The architecture document currently
contains no discussion of these independence considera-
tions, which should be added.

For example, the fact that the architecture incorporates
four (partly-)independent control components at all, and
are run on separate “bare metal” machines, represents
a significant step forward in the state-of-the-art for de-
ployed E-voting systems. The system already takes the
additional important steps of ensuring that these control
components are managed by separate teams, that they run
on a diversity of hardware (e.g., Intel and AMD proces-
sors), that they use a diversity of operating systems (e.g.,
Windows and Linux), and that they are physically iso-
lated in separately-locked cages. These general indepen-
dence provisions should be clearly described as part of
the publicly-documented architecture, even if not all de-
tails of precisely how these provisions are implemented
need (or should) necessarily be made public.

Just as importantly, the architecture should disclose, an-
alyze, and ideally justify the ways in which it cannot, or
currently does not, assure independence between the con-
trol components. Some of the potential independence lim-
itations apparent in at least the current version of the sys-
tem include in particular the following:

Software interdependence: There is currently only
one software implementation of the control component
logic. If a security-critical bug in one control component
goes uncaught by the SwissPost’s bug bounty program,
therefore, then that same bug may likely exist and be ex-
ploitable in all the other control components.
N -version programming – in which independent devel-

opment teams each write separate implementations of the
control component logic while referring only to a com-
mon functional specification – could mitigate this risk,
though obviously at a high development cost.

Platform interdependence: Even if the control compo-
nents run diverse operating systems, many of the libraries,
runtimes, and other platform elements that the control
components depend on may be cross-platform. Thus, one
critical security bug in a single cross-platform library that
all four control components happen to depend on might

render all four control components simultaneously vul-
nerable. The fact that the control component software is
largely written in the portability-focused Java language,
while clearly a “feature” for development and mainte-
nance purposes, may actually be a “bug” from an inde-
pendence perspective, because so much cross-platform
Java code may in fact be identical in practice across the
four control components. The recent “log4j” vulnerabil-
ity, which simultaneously affected a large fraction of the
entire Java ecosystem, is a prominent case in point.

A first step in addressing software dependency risks of
this kind would be to perform (and maintain) a deep de-
pendency analysis of the software running on the control
components [8], to identify software components poten-
tially buried “deep in the stack” that might unexpectedly
be identical (and hence perhaps identically exploitable)
across most or all of the control components. In cases
where there are multiple alternative implementations of
these deep dependencies – as there often are for popular
open-source software systems – the control components
could and ideally should be configured to rely on diverse
alternative implementations of these components. Per-
forming and maintaining such a deep dependency anal-
ysis would incur nontrivial development costs, of course,
and many of the common dependencies it identifies might
not have readily-available and “pluggable” alternatives. In
the long term, therefore, new alternative versions of these
dependencies might have to be developed “from scratch”
as in N -version programming to achieve the ideal of full
software platform independence, a goal that may be con-
ceivably feasible in the (very) long term but might well be
far too costly to be financed by any one country’s E-voting
program alone.

Organizational interdependence: Three of the four
mixing control components (CCMs), and all four of the
return code control components (CCRs), are currently de-
ployed and managed by the same organization (Swiss-
Post) and physically hosted in the same data center in-
frastructure (SwissPost’s), even if under the management
of different teams. These organizational and hosting de-
pendencies present common-mode failure risks at infras-
tructure level – one which is discussed more specifically
later in Section 5.2.

8

These dependencies could in principle be mitigated
by contracting with other organizations independent of
SwissPost to host and manage some of the control compo-
nents, obviously at certain substantial costs both financial
and logistical.

Persistent state interdependence: The system archi-
tecture document states that “Both the control compo-
nents and voting server persist to a standard RDBMS
(Oracle)”. This appears to be a common RDBMS for all
four control components, and thus represents a significant
potential independence risk that the architecture should
clearly document and analyze.

In particular, the four control components each have in-
ternal state that must be persistent (i.e., survive reboots)
but whose (independent) confidentiality is crucial – such
as the CCR and CCM private keys that the protocol uses.
Do these critical secrets persist to the common RDBMS
as well, or are they stored only locally on the physi-
cal control components? If an attacker could learn the
cryptographic private keys of all four control components
merely by compromising the common backend database
that they persist to, then this would represent an indepen-
dence failure of high concern.

In general, is the persisted control component state en-
crypted? If so, by whom (i.e., by the control component
itself or by the RDBMS server), how are the keys to
this encryption managed, who holds them, and how are
they recorvered after a failure? There are reasonable and
probably-secure answers to all of these questions, but the
architecture needs to address them clearly.

Infrastructure interdependence: The control compo-
nents’ dependence on a common RDBMS for persistence
is just one example of a common infrastructure depen-
dency, and any such common infrastructure dependency
should be clearly documented, analyzed, and justified on
a basis of costs, benefits, and risks.

Another such common infrastructure interdependency
of potential concern is the control components’ reliance
on a common Splunk instance to gather and archive the
logs of all control components. An adversary who could
compromise this common Splunk instance might effec-
tively be able to cover traces of attempted (or perhaps
successful) attacks against all four control components at

once. Even if the control components also maintain inde-
pendent local copies of their logs, this might be of little
benefit if the SwissPost teams managing the control com-
ponents routinely only monitor the logs via the common
Splunk instance.

Still another infrasructure dependency of potential con-
cern is the use of a common internal SwissPost “dash-
board” service for the general control and monitoring of
the control components. If an adversary were to compro-
mise this common dashboard service, then it might suc-
cessfully convince all four teams that “all is well” with
their respective control components, potentially for an ex-
tended time period, when in fact all is decidedly not well
with one or more of them. This interdependency risk ex-
emplifies the classic “trusted path” security principle: for
a human (person or team) to access a machine (e.g., con-
trol component) securely and independently, the complete
access path between the human (team) and machine (con-
trol component) must be secure (and independent).

A common potential interdependency risk worth not-
ing is that many of the common infrastructure dependen-
cies discussed above are in fact virtualized services hosted
atop a common SwissPost infrastructure cluster and man-
aged by a common virtualization platform (VMware).
This dependence on virtualized services thus presents the
further risk that a successful exploit against the underlying
virtualization platform – e.g., a VMware escape or man-
agement system exploit – could effectively compromise
all of these infrastructure dependencies at once (e.g., the
RDBMS state, the Splunk logs, and the dashboard ser-
vices for all the control components). These infrastruc-
ture dependency risks, both direct and indirect, need to be
clearly documented, analyzed, and ultimately justified.

Supply-chain interdependence: While the control
components are managed by separate SwissPost teams
once they are procured and installed, the actual process
of provisioning them currently follows common, central-
ized internal processes for procuring and configuring new
hardware. This common process could potentially expose
all the control components together to a variety of “supply
chain attack” threats.

Suppose, for example, an adversary successfully com-
promises (either at human or electronic level) the Swiss-
Post’s internal hardware procuration pipeline, or the pro-

9

cesses of a hardware supplier or other supply-chain in-
termediary that SwissPost usually relies on. The adver-
sary might then realistically be able to intercept or divert
deliveries of all four of the control components – in or-
der to compromise them at boot, firmware, or hardware
level – even if the four control components are from dif-
ferent hardware vendors and ordered at different times.
This form of supply-chain attack is a known practice of
nation-state intelligence agencies, for example [5].

To maximize supply-chain independence, it would be
preferable if each of the independent teams tasked with
managing each control component were also responsible
for procuring the hardware – through independent pur-
chasing channels distinct from the SwissPost’s normal in-
ternal process for at least some of the control components,
and preferably while minimizing any advance leakage of
any information about when, through what channels, or
for what purpose the hardware is being purchased. Simi-
larly, for maximum independence it would be preferable
if only the members of each control component’s respon-
sible team ever had physical access to the hardware, from
the moment of purchase and delivery through installation
in the locked cage dedicated to that control component,
and thereafter any time physical access is required. These
independence considerations must be balanced against
cost and other practicality considerations, of course.

2.4 Auditor independence
Particularly because the SwissPost E-voting architecture
relies almost solely on the role of auditor(s) to verify the
integrity of critical E-voting processes such as mixing and
decryption, as discussed above in Section 2.2, it is partic-
ularly crucial that the implementation of the auditors’ role
be as independent as possible from the implementation of
the rest of the system.

Just as with the independence of the control compo-
nents, the architecture should clearly document the pro-
visions taken to ensure the auditors’ independence both
organizationally and technically, and similarly the limita-
tions of this independence and the possible steps not taken
with relevant justifications. For example, how many audi-
tors are there expected to be and how are they selected?
How are they expected to procure and manage their crit-
ical devices – termed somewhat inconsistency the “au-
ditors’ technical aids” in the OEV, the “verifiers” in the

System Specification and Protocol, and the “Verification
Computer” in the operational guide?

One particular area of concern is that while the Archi-
tecture document, the System Specification, and the Pro-
tocol describe the auditors and their technical aids or ver-
ifier devices as clearly separate and independent roles, the
current Operational Guide never mentions auditors at all
as an independent role, and stylistically documents the
“Verification Computer” as being merely one of “four
computers (in the form of notebooks)” that are used to
manage the election. In general, the Operational Guide
appears to be written as if for an audience consisting of
one person or team who manages all of these security-
critical computers together including the (auditor’s) Veri-
fication Computer. The Guide makes no clear or explicit
separation between the steps that are supposed to be per-
formed by the team responsible for running the the elec-
tion itself (via the Configuration, Decryption, and Syn-
chronization Computers), and the steps that are supposed
to be performed by the independent person or team fill-
ing the auditor role and thus presumably responsible for
the Verification Computer. While this is most likely just a
readily-fixable documentation issue, it is nevertheless ar-
chitecturally important for the auditor role to remain sepa-
rate and strongly independent from the rest of the system
not just “in theory” (e.g., in the cryptographic protocols
and proofs) but also in the everyday operational practice
that the Operational Guide outlines.

2.5 Message-level authentication and in-
tegrity protection design

The SwissPost E-voting system represents a fairly com-
plex protocol involving numerous interactions by numer-
ous devices and subsystems: the voter’ devices, the voting
server, the control components, the cantonal computers,
the verification computer, etc. For a concrete implementa-
tion of such complex protocol to remain secure, it is gen-
erally critical to ensure that the interactions between all
the relevant electronic components are properly secured:
e.g., to ensure that messages that the protocol defines as
coming from a particular device can only come from that
particular device and can be verified as such (authentica-
tion), and that when a second device receives and con-
sumes information produced by the first device, that the

10

information consumed by the latter is indeed identical to
the information supposedly produced by the former (mes-
sage integrity protection).

2.5.1 The benefits, and risks, of abstraction

Neither the System Specification nor the Protocol docu-
ment thoroughly address this issue of securing the inter-
actions between most of the devices, because these docu-
ments are written (and formally analyzed) at a high level
of abstraction representing an abstract (ideal) rather than a
concrete (implemented) protocol. This high level of def-
inition and analysis corresponds to common practice in
the cryptographic theory community, and hence is not a
problem per se: defining and analyzing protocols at a high
abstract level makes the analysis problem more modular
and (relatively) tractable, whereas it would often be in-
tractable if all of the concrete lower-level details of the
interactions between devices (i.e., precisely how each de-
vice sends and receives each message) were included in
the analysis as well.

For example, in interaction diagrams like Fig. 6
“Overview of the SetupVoting algorithm” in the System
Specification, and the corresponding text, device interac-
tions are specified only in terms of abstract messages. For
example, each of the CCRs send a message containing
pkCCRj

to the Voting Server, the Voting Server sends a
message containing {pkCCRj

}4j=1 to the Setup Compo-
nent, and so on. At this level of abstraction, the System
Specification and Protocol merely assume – usually im-
plicitly – that the Voting Server somehow knows that the
first message indeed must have and could only have come
from the correct CCR 1 through 4 and not from an at-
tacker trying to impersonate one of the CCRs (authenti-
cation), and that the exact message that each CCR sent is
received correctly and unmodified by the Voting Server
(message integrity protection). Again, it is common prac-
tice and generally a good idea in a high-level system spec-
ification or cryptographic protocol to abstract away from
these low-level details of interaction security – provided
at some lower level these implementation details of inter-
action security are handled carefully and are appropriately
documented elsewhere.

For online, networked interactions between devices it
is fairly common merely to assume that a standard lower-
level protocol such as Transport Level Security (TLS)

handles the authentication and message integrity protec-
tion of the point-to-point interactions between devices.
The SwissPost E-voting system documents appear to as-
sume implicitly that such a layer exists and is successfully
securing device interactions, but the documents never ex-
plicitly describe these assumptions about lower imple-
mentation layers, even briefly. For example, neither TLS
nor message integrity protection appear to be mentioned
in any of the documents. The system architecture docu-
ment includes the relevant terms “PKI” (Public Key In-
frastructure) and “MAC” (Message Authentication Code)
in its list of terms, but never actually refers to them else-
where or mentions how they are used or relevant in the
system’s security architecture. The system architecture
document or a related document should at least summa-
rize the principles and methods by which the interactions
between all the relevant devices are secured at the mes-
sage interaction or or data transfer level.

Merely assuming (implicitly) that a layer like TLS is
present and “silently doing its job” is problematic in the
Swiss Post E-voting protocol in at least three ways:

Threat model: First, some of the devices are assumed
in the threat model to be potentially-compromised (in-
cluding the voters’ devices and the voting server), but in
practical deployment it is still extremely important that
these interactions be properly authenticated and integrity-
protected. As a straw-man example, while not securing
any of the connections between voting devices and the
Voting Server via TLS (i.e., just using “legacy” unen-
crypted HTTP) might technically not be a violation of the
abstract threat model since all of these devices might tech-
nically be compromised, nevertheless in practice the lack
of such protections would immediately expose the entire
voting system to trivial and devastating denial-of-service
(DoS) attack opportunities at the very least.

Public key infrastructure: A second way in which just
“assuming TLS” is inadequate is because TLS-based au-
thentication in turn fundamentally assumes and depends
on centralized Public Key Infrastructure (PKI). In par-
ticular, TLS’s assumed PKI model assumes that all of a
number of global root certificate authorities (CAs) – and
often many of the subsidiary CAs that they delegate sign-
ing power to – are fully trusted and never (for example)

11

issue bad certificates allowing an attacker to impersonate
a given domain name or other identity.

If the SwissPost E-voting system depended fully on
TLS’s traditional centralized PKI model for authenticat-
ing the interacting devices throughout the E-voting pro-
tocol, then this would be a major security concern, es-
pecially in terms of the independence considerations dis-
cussed in earlier sections. If all the system’s CCs, and/or
the cantonal and verification computers, authenticated
each others’ messages via traditional PKI certificates is-
sued by any of the standard global root CAs, for example,
then an attacker would need to compromise only a single
root CA in order to impersonate any and all of the criti-
cal devices (CCs, cantonal devices, verification computer,
etc). Worse, the attacker might perhaps need to compro-
mise only a single subsidiary CA that has sufficient del-
egated signing authority over the relevant portion of the
domain namespace – e.g.,, over ‘.ch’ domains perhaps.

Fortunately, based on the author’s discussions with
SwissPost, it is clear that the E-voting system does not
rely naively in this way on TLS’s traditional centralized
PKI. However, it is a problem that none of the current
documentation adequately describes how cross-device au-
thentication or PKI actually works in the SwissPost E-
voting system and on what basis these message interac-
tions should be deemed secure.

Manual data transfers: Finally, a third reason that just
implicitly “assuming TLS” is inadequate is because a
number of the most critical cross-device interactions in
the SwissPost E-voting system are (for good reasons) not
online or network-based, but instead via physical data
carriers (i.e., USB sticks) used to transfer information
manually from one device to another when offline (“air-
gapped”) devices are involved. For such manual informa-
tion transfers, TLS is obviously not in use and is unable to
provide either message authentication or integrity protec-
tion for these transfers. We might hope or expect that the
mere fact that these transfers are done in the presence of
various witnesses (e.g., Electoral Authority and Admin-
istration Board members) to confer adequate security to
these information transfer events. But such a hope is not
adequately well-founded, as explained further below, in
that a single compromised device might for example try
to trick the in-person witnesses (and perhaps succeed).

The current Operational Guide briefly refers in places
to signing and signature checking (e.g., Step 4 on page
12), but neither this nor relevant documents appear to state
where these signing keys come from, how they are issued
and managed, what the trust assumptions are around the
management of these keys, or whether and how signing
or other integrity protection comes into play in the many
offline cross-device interactions other than the few for
which these explicit signing processes are mentioned.

Thus, the system’s message-level interaction and de-
sign – particularly its methods of authentication and mes-
sage integrity protection throughout the protocol – are
worrisomely incomplete at least from a documentation
perspective. Either the system architecture document, or
some other appropriate document, should clearly define
the principles by which not only the online (networked)
but also the offline (data carrier) interactions are authen-
ticated and integrity-protected throughout the protocol. If
messages or information on data carriers is signed, then
the architecture at least needs to summarize what form
of PKI it assumes, how the signing keys are created and
managed, and so on. More broadly, not just the abstract
protocol but its concrete implementation needs to ensure
that there are appropriate integrity checks not just for par-
ticular pairwise device interactions but also “end-to-end”
when we consider the participating humans (e.g., Elec-
toral Authority and Administration Board members).

2.5.2 Decrypted results versus verified results

To place the above interaction-security issues into per-
spective, we now outline a hypothetical attack that ap-
pears potentially feasible when judging only by the cur-
rent documentation. Whether or not such an attack actu-
ally is feasible in reality depends on further implementa-
tion and operational details the author has not completely
analyzed, so this concern does not represent a claim of an
actual, exploitable security vulnerability.

As discussed earlier in Section 2.2, for election in-
tegrity the current system’s design critically assumes that
either all of the mixing control components (CCMs), or
the verification computer, is uncompromisd. Let us there-
fore assume that the verification computer is uncompro-
mised, but suppose that the Decryption Computer, which
performs the final mixing and decryption of election re-
sults, is compromised. Can the Decryption Computer po-

12

tentially manipulate the election results and display the
manipulated results to the witnesses physically present,
while sending the Verification Computer a correct set of
proofs and election results, without the trickery being de-
tected? In particular, can the Decryption Computer po-
tentially “decrypt” and “output” a different set of elec-
tion results from those that the Verification Computer has
(correctly) verified? Nothing in the either system architec-
ture document, nor the system specification or protocol,
nor the operational guide, currently seems to indicate that
there is a concrete correspondence check between the re-
sults the Decryption Computer outputs and the results the
Verification Computer has actually verified.

This hypothetical attack might proceed as follows:

1. The first three online mixing control components
(CCMs) correctly shuffle all the ballots and produce
correct shuffle proofs.

2. The Decryption Computer receives the correct en-
crypted ballots from the prior CCMs via Data Carrier
9 (Operational Guide section 7.3, Step 1).

3. The compromised Decryption Computer performs a
correct shuffle and produces a correct shuffle proof,
and exports this correct information to the Verifica-
tion Computer via the Data Carrier Verifier (section
7.3, Step 2).

4. The Verification Computer checks the (correct) final
shuffle proofs and reports “Success!” to all the wit-
nesses present The Verification Computer produces
its PDF verification report, which the present mem-
bers of the electoral authority sign as required.

5. During subsequent decryption of the election event
(section 7.5), however, the compromised Decryption
Computer decrypts the correct election results (e.g.,,
“Alice 15, Bob 9”), but then displays a different, ma-
nipulated set of results to the witnesses present (e.g.,,
“Alice 12, Bob 14”).

6. The compromised Decryption Computer again for-
wards the correct results to the Verification Com-
puter in the Step 5 export “for Final”.

7. The Verification Computer receives this information,
again verifies it successfully (because it is for the cor-

rect results), and again outputs “Success!” The Elec-
toral Authority members see no sign of a problem
and hence sign the second PDF verification report.

This form of attack may not be – and hopefully is not –
feasible if (1) the Verification Computer’s output in the fi-
nal step includes all information required to perform a full
“end-to-end” check of the exact correspondence between
the results the Verification Computer verified and the re-
sults the Decryption Computer announced, and (2) the
Electoral Authority members physically present always
carefully check that correspondence. The correspondence
information (1) might for example consist of a secure hash
(e.g., SHA256) of all the election results, and the cor-
respondence check (2) might consist of explicit instruc-
tions that the Electoral Authority members each manually
check that the hash displayed by the Decryption Com-
puter and output in the announced results is identical to
the hash displayed by the Verification Computer, indicat-
ing which election results were successfully verified.

However, none of the current documentation explicitly
indicates either (1) that the Verification Computer even
produces and displays the information required to perform
this correspondence check, or (2) specifies that the wit-
nesses present (e.g., Electoral Authority members) are ac-
tually expected and required to perform such a correspon-
dence check. Given that the lack of such a correspondence
check would lead to a devastating election-integrity weak-
ness in the presence of only one compromised device (the
Decryption Computer), it seems quite important to docu-
ment explicitly and analyze carefully the mechanisms and
processes in place to prevent such attacks.

This concern, which again does not necessarily rep-
resent an exploitable vulnerability, is merely intended
to illustrate one of a large class of risks that can arise
if the messages or information exchanges between de-
vices are merely assumed implicitly to follow a high-
level abstract protocol without adequate, explicit and
well-documented authentication and integrity checking at
the lower message-based device-interaction level as well.
This attention to lower-level interaction details is espe-
cially important in the SwissPost E-voting system context
because the easy and typical, implicit “assume TLS” as-
sumption is not directly applicable. As discussed above,
TLS’s threat model does not correspond to that of the E-
voting system, TLS assumes traditional centralized PKI

13

unsuitable for the E-voting system, and TLS’s protections
could at best cover only the online interactions, and not
the “data carrier” interactions involving offline devices.

3 E-voting protocol (Scope 1)

This section focuses on observations and concerns about
the SwissPost E-voting protocol, as part of Scope 1 of the
audit. The author did not attempt to perform a detailed re-
view of the complete cryptographic protocol or its proofs,
but inspected these aspects of the system as needed as part
of a high-level architecture analysis of the system.

3.1 Usage guidance on ballot configuration

The E-voting system’ss architecture document currently
leaves the intended usage model largely unspecified (Sec-
tion 2.1), and this underspecification of usage model un-
fortunately carries into the current System Specification
and Protocol documents as well. In general, neither doc-
ument clearly specifies what kinds of questions and elec-
tions are and aren’t safely supported by the system, and
how verification card sets and ballots should be config-
ured accordingly.

More specifically, the current System Specification and
Protocol both leave unanswered the following questions,
whose answers appear to be important to the protocol’s
security:

1. Can a voter cast a valid ballot that leaves some al-
lowed selections unanswered?

2. In a multi-seat election allowing the user to make
k > 1 selections, can a voter make fewer than k se-
lections on a valid ballot?

3. In a multi-seat election allowing the user to make
k > 1 selections, can a voter choose the same candi-
date more than once?

4. How should voting card sets be configured to handle
the above cases?

5. How should the voting client formulate cast ballots
in the above cases?

Optional selections: It is common in many voting con-
texts for choices to be optional: i.e.,, the voter is allowed
but not required to answer all questions or to pick candi-
dates in all elections. Neither the System Specification nor
the Protocol describe how such optional choices should be
handled in either verification card set (VCS) configuration
or ballot casting.

As currently written, in fact, the System Specification
and Protocol implicitly appear to suggest a possible ap-
proach that proves to be dangerously insecure. In partic-
ular, one of the key configuration parameters for a voting
card set, ψ, is defined as “Allowed number of selections”
(System Specification, “Symbols”, page 6). The use of the
word “Allowed” here suggests that a valid ballot might
contain up to ψ selections but might legitimately contain
fewer selections. If all of these selections were considered
mandatory, in contrast, we might expect ψ to be defined
as “Required number of selections”.

The writing elsewhere similarly suggests that these ψ
selections may be optional. When ψ is first discussed in
section 3.2 “Election Event Context” of the System Spec-
ification, for example, it is introduced as “the number of
selectable voting options ψ” (and not, for example, “the
number of voting options ψ the voter must select”). Sec-
tion 3.3.1 “Voting Options” starts with the statement, “A
voter can select ψ out of n voting options”, which again
suggests that a voter need not make all ψ selections. If
this were not the case then we might expect the sentence
to read, for example, “A voter selects ψ out of n voting
options” – or even more clearly, “A voter is required to
select ψ out of n voting options”.

If these selections are indeed optional as the writing
suggests, then the next question is how a voting client is
expected to formulate and cast a ballot in which some of
the ψ allowed selections for a voting card set are missing:
that is, how should a correct voting client use Algorithm
5.2 CreateVote to handle this case?

One potential (and dangerously wrong) interpretation
might be that the value of ψ passed to CreateVote in
this case would be the number of actually selected op-
tions, which might be less than the value of ψ that the
voting card set was configured for. In this case, we might
expect that CreateVote simply creates a “short” (but
ostensibly still-valid) ballot.

A second (also dangerously wrong) supposition might
be that the voting client is expected to “pad” the user’s

14

selections to the standard number ψ for the relevant voting
card set before invoking CreateVote – for example, by
simply duplicating the last choice the user actually makes.

Both of these conceivable answers would be danger-
ously wrong, however, because using the protocol in this
way would break both voter privacy and the cast-as-
intended verifiability property as we explore next.

Privacy hazards: A “short ballot”, containing fewer
than the allowed ψ number of selections for the rele-
vant voting card set, would be clearly distinguishable (by
the untrustworthy voting server for example) from other
ballots containing exactly ψ selections, which would de-
crease voter anonymity.

A “padded ballot” containing duplicate copies of the
same option in more than one of the ψ selection posi-
tions, similarly, would be clearly distinguishable in clear-
text from ballots not padded this way (or from ballots with
a different number of padding selections).

Cast-as-intended verifiability hazards: If a “short bal-
lot” with fewer than the standard ψ selections was valid,
then a compromised (e.g., malware-infected) voting client
could undetectably “fill out” any or all of the voter’s un-
filled selections in any fashion of the adversary’s choos-
ing. The malicious voting client would then get back from
the voting server more than the number of short voting
codes it “needs” according to the user’s actual selections,
and would merely drop the short codes for the secretly-
cast options and show the user only the (correct) short
codes for the user’s selections.

Similarly, if a valid ballot might be “padded” with du-
plicate copies of the same option, then a compromised
voting client could silently replace any of these dupli-
cate copies with non-duplicate choices before submitting
the ballot to the voting server. The malicious client will
again get back all the short codes it “needs” to show the
user, plus additional codes for its secretly-cast (no-longer-
duplicate) choices, which the malicious client simply dis-
cards instead of showing to the user.

Multi-seat elections: Section 3.4 “Correct Combina-
tion of Voting Options” in the System Specification, as
well as the corresponding section 10.4 in the Protocol, im-
ply that it is valid for some elections to allow the user to

make more than one (e.g.,, k > 1) selections among the
same set of options (i.e.,, corresponding to the same cor-
rectnessID). As with the question about the handling of
optional selections discussed above, this multi-selection
case raises the some issues above in the event the user can
(and does) choose fewer than the allowed k choices in a
particular ballot. If choosing fewer than k selections were
to produce either a “short ballot” or a “padded ballot”,
then both privacy and cast-as-intended verifiability would
be compromised as discussed above.

Further, the multi-seat election scenario presents the
additional situation in which a voter might be legitimately
allowed to choose the same candidate more than once in
a single ballot. That is, if I am allowed three selections
in a particular multi-seat race (such as the “correctnessID
= ccccc3” mentioned in the specification), can I choose
the same candidate, e.g.,, Alice, in all three selections,
in order to cast all of my three votes to support Alice
and none to support other candidates? This semantically-
meaningful duplicate selection of a single candidate is in
fact allowed in some elections in Switzerland, so this is
not a purely-hypothetical corner-case. If a voting client
were to handle this situation in the “natural and obvious
way”, however – by simply including the same option
(and corresponding prime number) representing Alice in
more than one of the ψ selections comprising the ballot,
then both privacy and cast-as-intended verifiability would
again be broken as discussed above.

For a multi-selection election in which up to 1 < d ≤ k
duplicate choices are allowed, it appears that the only safe
way to use the system is to ensure that the user has d dis-
tinct options representing the same candidate to choose
from. Each of these distinct options maps to a distinct
prime number, and each results in a distinct code being
returned if selected.

Furthermore, this uniqueness-of-selections requirement
must be rigorously enforced by the voting client. If a
voter could accidentally choose the same “Alice” option
twice (instead of choosing the two distinct “Alice” op-
tions) when casting two votes for Alice, then the voter’s
ballot would be both distinguishable, violating voter pri-
vacy, and would be malleable by a malicious voting client,
violating cast-as-intended verifiability.

15

Recommendation: First, the System Specification and
Protocol should be updated to specify precisely what
kinds of questions and elections are and aren’t allowed
by the system. The specifications should in particular de-
scribe how both optional choices and duplicate choices
are to be properly handled, in voting card set configura-
tion and in ballot formation.

The System Specification and Protocol documents
should be revised to clarify that the ψ configuration pa-
rameter represents the number of selections the user is re-
quired to make, and not merely the number the user is
“allowed” to make, on a valid ballot. If a choice is seman-
tically optional for a user, then that must be handled by
including an explicit pseudo-choice, such as “Abstain” or
“No Answer”, on the ballot, mapping to a unique prime
number and producing a unique code for cast-as-intended
verification.

The System Specification and Protocol documents
should be revised to clarify that at ballot formation and
casting time, all of the ψ required selections must be
unique at protocol level – i.e., mapping to distinct prime
numbers that will yield distinct codes for cast-as-intended
verification. If a voter is legitimately allowed to make up
to d duplicate choices of the same candidate in a (multi-
seat) election, then the documentation should clarify that
the voter must be given d distinct options associated with
that candidate, each mapping to distinct prime numbers
and producing distinct verification codes if selected.

Finally, the System Specification and Protocol should
be updated so that the uniqueness of the ψ selected
options within a ballot is enforced, both by the vot-
ing client (e.g., in the specification of Algorithm 5.2
CreateVote), and in the trustworthy part of the sys-
tem (e.g., perhaps in the specification of Algorithm 5.1.3
VerifyBallotCCRj). If the uniqueness requirement is
not enforced by the voting client, then a user might acci-
dentally attempt to cast an invalid, privacy-compromising
ballot, as described above. If the uniqueness requirement
is enforced only by the voting client and not by the trust-
worthy components of the system, then a compromised
(e.g., malware-infected) voting client might secretly cast
“invalid” ballots containing duplicate options on behalf of
the user, which could then go undetected throughout bal-
lot casting and mixing, but would effectively “mark” the
voter’s ballot, making it clearly distinguishable from other
ballots throughout the process.

3.2 Write-ins and individual verifiability
The System Specification and Protocol include a capabil-
ity allowing the voter to cast write-in options, in which
the voter provides an arbitrary string that gets encrypted
and included in the ballot separately from the predefined
choices. However, this capability is incompletely docu-
mented. Furthermore, it is not clear whether this capabil-
ity may be used at all in compliance with the applicable
draft regulations (OEV), without modifications to those
regulations.

Incomplete documentation: As with the issues of op-
tional or duplicate choices discussed above, the System
Specification and Protocol are lacking any clear descrip-
tion of precisely how the write-in capability is intended to
be used, or can be used securely.

For example, voting card sets include a configuration
parameter δ̂ such that δ̂ − 1 is the number of write-ins
permitted. This δ̂ in effect determines the total number of
ElGamal ciphertexts comprising each ballot: one cipher-
text containing all the predetermined choices and an addi-
tional ciphertext for each potential write-in (see for exam-
ple Algorithm 6.2 MixDecOnlinej in the System Speci-
fication).

However, neither the System Specification nor Proto-
col describe exactly how any write-in choices are to be
encoded and encrypted to these δ̂ − 1 additional cipher-
texts. Neither does the documentation specify how these
write-in choices interact with the predefined choices en-
coded into the main (first) ciphertext.

For example, if the voter makes a write-in choice for
some election in which this is allowed, then that voter
clearly must make one fewer regular choices of prede-
fined candidates as part of the ballot’s main ciphertext.
What rules apply to this process, and how and where are
they enforced? Must an election allowing write-in candi-
dates define one or more predefined “placeholder” choices
– such as “Write-in 1”, “Write-in 2”, etc., in case multiple
write-ins are allowed in a particular election?

If write-ins are allowed in multiple distinct elections
with different correctnessID values, then what is the map-
ping between selections encoded into the main ciphertext
with these correctnessID values and the δ̂ − 1 write-in
ciphertexts? How are ballots potentially containing write-
ins validated and counted after mixing and decryption?

16

Implementations of the protocol that answer these
questions in the “wrong” way could readily lead to critical
security bugs, such as eliminating cast-as-intended verifi-
ability for all voters including those who make no write-in
selections, as discussed below.

Regulatory compliance: Beyond the easily-fixable is-
sue of incomplete documentation, a second important, and
perhaps harder-to-fix, question is whether using the sys-
tem’s write-in capability is, or even can be, compliant
with the regulations as defined in the draft OEV.

Write-in options cannot in practice provide “cast-as-
intended” voter verifiability using any code-based system
of the type the SwissPost system uses. If I intend to cast
a write-in vote for “Mickey Mouse”, then malware on my
voting client can trivially change my ballot to a write-in
vote for “Donald Duck” without my knowledge.

To guarantee cast-as-intended verifiability for write-in
votes, each voter would have to be supplied in advance
with codes not only for the predefined choices, but also in-
dividual codes for all possible write-in candidate names.
Since this number of codes would be exponential in the
number of characters allowed for write-ins, each voter
would have to be mailed not just a voting card in advance,
but a hefty printed volume, even if write-ins were con-
strained to be quite short. This is clearly not practical.

Section 13.3 “Write-ins” in the Protocol specification
already acknowledges this problem: “the protocol can-
not provide sent-as-intended for the write-in candidates,
since it is impossible to map all possible write-in values to
a Choice Return Code.” However, the immediately-prior
sentence of this paragraph also claims that “the existence
of write-in candidates does not impact the security of the
protocol” – but this claim could fail to be true depending
on how the protocol is used, as discussed below.

Even if the write-in facility can be and is used so as not
to affect the security of voters who make only predefined
choices, it is not clear that at least the current draft regu-
lations in the OEV even allow exceptions to the cast-as-
intended verifiability requirements for voters who make
write-in choices. Specifically, Art. 5 of the draft OEV re-
quires that “The person voting can ascertain whether his
or her vote has been manipulated or intercepted on the
user device or during transmission” and that “the person
voting receives proof that the trustworthy part of the sys-

tem (Art. 8) has registered the vote as it was entered by
the person voting on the user device as being in confor-
mity with the system.” By the most straightforward inter-
pretation, this text would appear intended to apply to all
voters who cast their votes electronically. No exception
or “loophole” is readily apparent that would suggest that
it is allowable and compliant for some electronically-cast
ballots – such as those cast with write-in options – not to
guarantee the individual verifiability property.

This gap between what the draft regulations seems to
demand, and what the SwissPost system – or any simi-
lar code-based voting system – can actually deliver in the
case of write-in options, needs to be resolved somehow.
The obvious choices are:

1. Change the OEV to allow an exception to the indi-
vidual verifiability requirement in the case of write-
ins.

2. Disallow the use the write-in capability for electronic
ballots in Switzerland governed by the OEV. That
is, simply require that δ̂ always be configured to be
equal to 1, at least in Switzerland. Voters could be
instructed that if they wish to cast a ballot that in-
cludes any write-in candidates, then they must use a
different voting channel (mail or in-person).

3. Simply remove the write-in capability from the vot-
ing system entirely, with the benefit of simplifying
it slightly, if it is determined that its use is not and
cannot be made compliant with the applicable regu-
lations.

Election manipulation hazards: In considering how to
resolve this issue, it should be recognized that while write-
ins are usually rare in most elections, this need not be and
is not the case in all elections. For example, there can be
rare cases in which a “dark horse” candidate joins a race
late, or is otherwise ineligible to be included in the prede-
fined choices, but nevertheless proves extremely popular
– occasionally perhaps even electable.

In such rare scenarios, in which many (perhaps even
a majority of) voters cast write-in votes – however un-
common such scenarios might be – is it acceptable to lose
individual verifiability for all of those voters?

We might, for example, envision a nation-state adver-
sary “laying in wait” for exactly such a scenario – or

17

even deliberately trying to manufacture such a scenario,
by throwing substantial resources at promoting some,
perhaps any, “dark horse” candidate late in an election.
The adversary need not even care who this potentially-
electable dark horse candidate actually is or what their
platform would be. But if this scenario actually occurs,
and a majority of voters intend to choose “Alice” as their
write-in candidate, adversary-controlled malware on the
voting clients might secretly change most or all of those
write-in choices to “Eve”, the candidate the adversary
wants to win. So while Alice is the dark horse candi-
date that became popular at the last minute, Eve becomes
the candidate actually elected. The adversary has in effect
pulled off a “bait-and-switch” scam on the electorate, in
which Alice is the bait and Eve is the switch.

Hazards potentially affecting all voters: Even bar-
ring such admittedly-rare “dark horse” election scenarios,
as mentioned earlier, insufficiently careful use of the E-
voting system’s write-in capability could compromise the
system’s security – not just for voters who (intend to) cast
write-in ballots, but potentially for all voters.

For example, the current documents do not specify how
ballots that appear to contain write-in options are to be
validated and counted after decryption. For example, if a
decrypted ballot appears to contain both a predetermined
candidate choice in the main ciphertext and a non-empty
ciphertext in the corresponding write-in position, is such
a ballot considered valid, and if so which choice “wins”
in the counting?

If the write-in candidate overrides the predefined
choice in such a ballot, then malicious voting clients could
silently override the choices of all voters with write-in
choices, simply by attaching a write-in ciphertext of the
adversary’s choosing to a ballot containing the predefined
choise the voter actually indicated.

Treating ballots containing both a predefined and a
write-in choice as invalid would similarly compromise se-
curity for all voters, however. Even if malware-controlled
voting clients could not undetectably change predefined
voting choices to a valid write-in ballot, the malware-
controlled voting client could still undetectably convert
valid ballots containing only predefined choices into in-
valid ballots that would be discarded at counting time, in
effect silently disenfranchising voters.

It is of course relatively easy to protect the cast-as-
intended verifiability of ballots that make only predefined
choices: simply require that the predefined choices always
have precedence, and that the contents of write-in cipher-
texts are considered only when a corresponding prede-
fined selection index indicates a particular option desig-
nating a write-in choice. But even if this is the way the
system already works, it needs to be documented as such.

4 Software (Scope 2)

The author performed some inspection of the current soft-
ware comprising the Swiss Post E-voting system, partic-
ularly to gain a better understanding of various details of
its operation and questions that arose in other aspects of
this analysis. As stated earlier, the author did not attempt a
systematic, “line-by-line” inspection of the software, but
instead remained focused on broader architectural analy-
sis of the overall system. As the author’s limited review
of the software did not revealed any substantive findings,
this section is left empty.

5 Infrastructure (Scope 3)

This section focuses on the SwissPost infrastructure sup-
porting the deployed E-voting system. The observations
in this section are based not only on the key documents
listed earlier but also on numerous interviews as part of
Scope 3 of the audit.

5.1 Voter authentication second factor

The system specification and cryptographic protocol dis-
cuss the issue of voter authentication to the voting server
only in general, abstract terms. Indeed, as the Protocol
specification points out (section 13.1.2 “Authentication in
Voting Phase”), authenticating the voting device to the
voting server is technically “pointless” according to the
abstract threat model because both voting device and vot-
ing server are considered untrustworthy and “the adver-
sary could circumvent it at will.” In practice, however,
authentication of voters to the voting server is extremely
important, to avoid the massive denial-of-service or voter-

18

confusion attacks that would be trivial if miscreants could
easily impersonate voters at will.

The system architecture document specifies that “Au-
thentication requires the voter’s Start Voting Key (SVK)
plus an additional authentication factor” (section 6.2.2
“Voting Phase”). This “additional authentication factor”
is left unspecified, which may be reasonable since the
specific choice may be very implementation-specific and
there may be reason to change it or ultimately to support
various second authentication factors.

However, it turns out that the current, one and only
“standard” choice for this second authentication factor is
the voter’s birth year or birth date. This choice is appeal-
ing of course because it is something most voters know
about themselves and are unlikely to forget. However, it is
also a problematic choice of second authentication factor
because it is something that is likely to be known by all of
the voter’s (extended) family members, friends, and any-
one who has ever attended (or even seen an announcement
for) a birthday party for the voter in question. A person’s
birth date is also a piece of information that stays fixed
throughout a person’s lifetime and can never be changed
like a password (other than by taking the rather large
step of creating a false identity with a different birthdate).
Thus, it would likely be preferable to choose something
else as the second factor for voter authentication.

5.2 Physical access to control components
While the broader issue of control component indepen-
dence was addressed earlier in Section 2.3 and will not
be repeated here, one particular independence concern at
infrastructure level that came to light during Scope 3 dis-
cussions is that – at least as of that time – the keys con-
trolling physical access to the locked data center cages
for all four control components were kept (in a lock box)
in the office of a single high-ranking SwissPost official.
This represents an independence risk, since that official –
or anyone able to gain sufficient access that office – might
in principle gain physical access to and hence the oppor-
tunity to compromise all four control components.

It is useful and desirable to ensure that any physical
access to any control component’s locked cage is access-
controlled at the highest feasible organizational level.
However, a preferable way to achieve this high-level ac-
cess control, without compromising the physical indepen-

dence of the control components, would be to arrange for
each control component’s cage to be physically locked by
two independent locks, both of which must be unlocked
in order to open the cage. The keys to one of these locks
would be held by the high-level official controlling ac-
cess to all cages, while the keys to the other lock would
be held (only) by the members of the team responsible
for that particular control component. Thus, access to any
control component’s cage should and would require the
presence and cooperation of both the high-level official
and the relevant control component’s team members.

5.3 Reproducible builds
A significant step forward that the SwissPost E-voting
system has already taken is to implement reproducible
builds [1, 4] of the E-voting system components. Given
a particular snapshot of the source code that a system de-
pends on, a reproducible build system always determin-
istically produces the same binary. This way, anyone else
can independently reproduce the build and verify that it
indeed represents the (one and only) correct build output
given the input source code, and was not (for example)
tampered with to insert a back door at binary level. This
state-of-the-art practice represents an important, if partial,
solution to certain software supply-chain attacks and the
famous problem of “trusting trust” [6].

As of the time of the discussions comprising this au-
dit, however, two issues arose in which the current repro-
ducible build practice appear less complete or systematic
than would be ideal. The first issue is that the current op-
erational processes do not require that anyone outside of
SwissPost actually reproduce and check the reproducible
builds using independent build systems, as would be ideal.
The second issue is that the current operational processes
do not appear to include clear mechanisms to verify, at
software installation or election time, that reproducible
builds that are supposed to be running on the critical pro-
duction systems are in fact the builds actually running on
those production systems. These issues are readily fixable,
with some cost/benefit tradeoffs of course.

5.3.1 Are the builds independently reproduced?

In the currently-defined operational processes, the only
parties that actually reproduce the build on a regular ba-

19

sis – and in particular who reproduce and verify the pro-
duction binaries – are (different) teams within SwissPost.
This internal independence of build reproduction is im-
portant and valuable. It would be even better, however,
if some party external to SwissPost – such as an inde-
pendent auditor – would be tasked with actually repro-
ducing and verifying the builds using independent build
infrastructure (i.e., not that of SwissPost). In the current
build practice, an independent “observer” is present, but
the observer merely witnesses the build being reproduced
by SwissPost personnel on SwissPost’s systems; the ob-
server does not actually reproduce the builds.

In principle anyone else outside SwissPost should also
be able to reproduce and verify these builds. But there is
currently appears to be no operational practice or require-
ment that anyone in particular – independent of Swiss-
Post – actually does so. While not necessarily a major
weakness, it would be preferable if the standard oper-
ational practice included the actual reproducible build-
ing of the production binaries by at least one truly-
independent external auditor on separate infrastructure.

5.3.2 Are the reproducible builds those actually run?

Even if the build binaries that are supposed to be run on
a production system are fully public, reproducible, and
even independently reproduced, as of the time of this au-
dit there was no strong operational process for verifying
that those particular reproducibly-built binaries are in fact
the binaries actually installed and running during an elec-
tion event. That is, perhaps the correct production binaries
to be run are fully reproducible and public knowledge, but
some other (perhaps compromised) binaries might be se-
cretly installed and running on the production system.

The strongest state-of-the-art solution to this problem
would be to use hardware-level remote attestation, such
as the “trusted boot” or “measured launch” technologies
available on Intel and other processors. With this practice,
the hardware produces a digitally signed attestation of the
exact stack of binaries (firmware, operating system, and
application) that are running on the production system at
its time of use. Anyone can then verify this attestation to
check that the production system is in fact running the (re-
producibly built) binaries that it is supposed to be running
– provided of course the processor or processor vendor’s
attestation mechanism are not themselves compromised.

Deploying these remote attestation mechanisms is non-
trivial and may incur significant additional development
and deployment costs, however, since not just the appli-
cation binaries but operating system and firmware images
must be measured and attested as well for full effective-
ness of the process. Remote attestation mechanisms are
extremely platform-specific, as well, so these costs would
have to be born for each of the different platforms that are
used (e.g., for diversity and independence).

Until it is practical to invest in such a hardware-level
approach on all the most critical devices, a next-best
approach would be to use operating system-level mea-
sures and operational processes to verify (e.g., before each
election) that the expected reproducibly-built binaries are
actually installed and running. For example, manual or
scripted processes might be invoked at superuser level af-
ter each software installation/update event and/or before
each election to report the hashes (e.g., SHA256) of all
the installed binaries, and the manual operational pro-
cesses should include explicitly checking those hashes.
Further, these measures should be designed to ensure
that a one-time compromise of application-level software
on a critical device cannot readily defeat these checking
measures (e.g.,, a compromised binary run once arrang-
ing to fake the reported hashes of subsequently-installed
reproducible binaries). While there is no perfect solu-
tion, at ensuring that the installed application-level bi-
naries themselves never need or execute with supervi-
sor privileges, and that the software-installation and hash-
reporting mechanisms are protected at superuser level
from any application-level compromise, would be a basic
recommended best practice.

6 Conclusion
In its current form as of the present audit, the SwissPost E-
voting system embodies a solid architecture for E-voting
that in most respects meets or leads the state-of-the-art in
international practices for the design, development, and
evaluation of E-voting systems. This report has identified
and discussed a variety of respects in which the current
system falls short of what the author considers ideal for
such a system, focusing especially on architecture-level
or “end-to-end” issues that potentially involve or inter-
act across all three audit scopes. All of the identified is-

20

sues appear fixable (or at least possible to improve signif-
icantly) in various ways. Some issues appear likely fixable
relatively quickly and easily, as in the case of unclear or
incomplete documentation. Addressing other issues may
be much more complex and costly, and may be feasible
only in a future generation of the E-voting system. Never-
theless, it is the author’s judgment that as imperfect as the
current system might be when judged against a nonexis-
tent ideal, the current system generally appears to achieve
its stated goals, under the corresponding assumptions and
the specific threat model around which it was designed.

References
[1] Jérémy Bobbio (Lunar). Reproducible Builds for De-

bian. In FOSDEM, February 2014.

[2] Miguel Castro and Barbara Liskov. Practical Byzan-
tine Fault Tolerance. In 3rd USENIX Symposium
on Operating Systems Design and Implementation
(OSDI), February 1999.

[3] Christian Killer and Burkhard Stiller. The Swiss
postal voting process and its system and security anal-
ysis. In E-Vote-ID: International Joint Conference on
Electronic Voting, October 2019.

[4] Kirill Nikitin, Eleftherios Kokoris-Kogias, Philipp Jo-
vanovic, Nicolas Gailly, Linus Gasser, Ismail Khoffi,
Justin Cappos, and Bryan Ford. CHAINIAC: Proac-
tive Software-Update Transparency via Collectively
Signed Skipchains and Verified Builds. In 26th
USENIX Security Symposium, pages 1271–1287,
2017.

[5] SPIEGEL Staff. Documents Reveal Top NSA Hack-
ing Unit. SPIEGEL International, December 2013.

[6] Ken Thompson. Reflections on Trusting Trust. Com-
mun. ACM, 27(8):761–763, August 1984.

[7] David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan
Ford, and Aaron Johnson. Scalable anonymous group
communication in the anytrust model. In European
Workshop on System Security (EuroSec), April 2012.

[8] Ennan Zhai, Ruichuan Chen, David Isaac Wolinsky,
and Bryan Ford. Heading off correlated failures

through Independence-as-a-service. In 11th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI), October 2014.

21

https://archive.fosdem.org/2014/schedule/event/reproducibledebian/
https://archive.fosdem.org/2014/schedule/event/reproducibledebian/
http://css.csail.mit.edu/6.824/2014/papers/castro-practicalbft.pdf
http://css.csail.mit.edu/6.824/2014/papers/castro-practicalbft.pdf
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/nikitin
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/nikitin
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/nikitin
https://www.spiegel.de/international/world/the-nsa-uses-powerful-toolbox-in-effort-to-spy-on-global-networks-a-940969.html
https://www.spiegel.de/international/world/the-nsa-uses-powerful-toolbox-in-effort-to-spy-on-global-networks-a-940969.html
https://www.ece.cmu.edu/~ganger/712.fall02/papers/p761-thompson.pdf

	Overview of the audit
	Methodology
	Important caveats
	Key reference documents
	Overview of observations

	General architectural concerns
	Architecture documentation issues
	Limited application of trust splitting
	Control component independence
	Auditor independence
	Message-level authentication and integrity protection design
	The benefits, and risks, of abstraction
	Decrypted results versus verified results

	E-voting protocol (Scope 1)
	Usage guidance on ballot configuration
	Write-ins and individual verifiability

	Software (Scope 2)
	Infrastructure (Scope 3)
	Voter authentication second factor
	Physical access to control components
	Reproducible builds
	Are the builds independently reproduced?
	Are the reproducible builds those actually run?

	Conclusion

