
 - 1 -

CLASSIFICATION APPROVED FOR PUBLIC RELEASE
REFERENCE P020456
CUSTOMER Federal Chancellery
LAST MODIFIED 19/04/2022

E-VOTING WEB APPLICATION

SECURITY AUDIT REPORT

APRIL 2022

RUE DU SABLON 4
1110 MORGES
SWITZERLAND

TÉL : +41 21 804 64 01
FAX : +41 21 804 64 02

WWW.SCRT.CH
INFO@SCRT.CH

P020456 | E-voting web application 2

TABLE OF CONTENTS

Executive summary .. 3

Results summary .. 3

High level impressions ... 3

Security dashboard .. 4

Scope .. 4

Risks by level .. 4

Risks by remediation .. 4

Global risk level .. 4

Status by attacker profile ... 4

Identified risks .. 5

Proposed remediation plan ... 5

Technical summary .. 6

Scope .. 6

Restrictions .. 6

Schedule ... 6

Results .. 6

Vulnerability summary ... 8

Detailed results .. 9

Vulnerabilities and exploitation ... 9

P020456-1 Use of third-party libraries (supply chain attack) .. 9

Complements ... 13

Legend .. 13

SCRT Score ... 13

CVSS Score ... 13

Context ... 13

Additional attacks .. 14

Risk calculation ... 14

Attempted attacks ... 15

Attack scope ... 15

Search for known vulnerabilities (vulnerability scanning) .. 15

Network protocol analysis ... 16

Weak and default passwords discovery .. 16

Web applications ... 16

Network sniffing ... 17

Exploiting vulnerabilities .. 17

P020456 | E-voting web application 3

EXECUTIVE SUMMARY

RESULTS SUMMARY

The Federal Chancellery (FCh) contracted SCRT SA to perform a security audit of the E-voting
system developed by Swiss Post.

During the audit, SCRT engineers mainly focused on the web voting platform and tried to
identify vulnerabilities that would allow an attacker to compromise the integrity or the
secrecy of a voter's choice. To perform the audit, the Swiss Post created a test election event
on its infrastructure and provided SCRT with a set of voting cards. Besides, SCRT auditors had
access to the source code of the voting system which is available through a public Gitlab
repository.

The conducted test and the review of the code allowed SCRT engineers to identify a low-risk
issue affecting the system. Indeed, both the client and server-side parts of the application rely
on external dependencies. This introduces the risk of a "supply chain attack". Indeed, if one
of these external projects were to be compromised, this could lead to the injection of
malicious code in the E-voting project and thus to the confidentiality of the votes being
compromised. It is not possible to prevent suck attacks, but it is possible to detect them by
performing in-depth code reviews of external dependencies before each build of the project
that is meant to be deployed in production. SCRT did not verify this particular point during
this intrusion test.

In conclusion, the overall risk level is very low. Nevertheless, the reported "supply chain
attack" risk underlines the importance of in-depth source code review of every component
used in the project.

HIGH LEVEL IMPRESSIONS

STRENGTHS

User input handling

Exposed attack surface

TLS configuration

HTTP security headers

Authentication

Protection against bruteforce attacks

WEAKNESSES

Use of third-party libraries

P020456 | E-voting web application 4

SECURITY DASHBOARD

SCOPE

Type White-box pentest

Scope E-voting web application

Positioning SCRT Offices

Schedule 2021-11-26 – 2021-12-03
Effort 16 days

Consultants 3

RISKS BY LEVEL

RISKS BY REMEDIATION

GLOBAL RISK LEVEL

ATTACKER PROFILES RISK LEVEL

Unauthenticated attacker

Voter

STATUS BY ATTACKER PROFILE

OBJECTIVES
UNAUTHENTICATED

ATTACKER
VOTER

Access the administrator panel

Vote in place of legitimate users

Consult other users' votes

Execute arbitrary commands on a server

Tamper with a user's vote

 NOT COMPROMISED PARTIALLY COMPROMISED COMPROMISED

P020456 | E-voting web application 5

IDENTIFIED RISKS

ID RISK LEVEL RISK DETAILS
RELATED
FLAWS

FIX

1 MODERATE
An attacker could perform a "supply chain attack" and
insert malicious code in a client-side or server-side library.

P020456-1

PROPOSED REMEDIATION PLAN

ID ACTION DIFFICULTY
RELATED

RISKS

1
Review the source code of third-party libraries before building the
project.

HARD 1

P020456 | E-voting web application 6

TECHNICAL SUMMARY

SCOPE

The scope of the audit was constituted by the following election event:

» https://pit.evoting.ch/vote/#/legal-terms/009e088e0b56405ab8c5644db2cfdb8e

As the penetration test was performed as a white-box audit on an open-source project, the
source code of the application was also available on GitLab: https://gitlab.com/swisspost-
evoting.

Several voting cards were also provided for the audit to take place.

RESTRICTIONS

No social engineering or denial of service attacks were performed during this audit.

SCHEDULE

START DATE END DATE

2021-11-26 2021-12-03

EFFORT

14 days

RESULTS

The overall security level is very high. No vulnerabilities with a practical exploitation scenario
could be found within the allotted time.

The engineers were provided with a set of voting cards and had access to the source code of
the application (public GitLab repository). The main objectives were to verify whether an
attacker could access a vote's information or tamper with a voter's choices without them
noticing. However, Denial of Service (DoS) attacks were out of the scope.

The first and most obvious attack scenario considered by the engineers was Man-in-the-
Middle. In other words, is there any way for an attacker to intercept the communication
between a client and the server? It turns out the application is very well protected against
this kind of attacks.

For instance, the TLS configuration follows all the best practices and is compatible with
perfect forward secrecy. HSTS is also enforced with preloading, which means that the
application is also protected against "SSL striping" attacks. Finally, DNSSEC is configured,
preventing a malicious DNS server on an untrusted network from redirecting the user to an
arbitrary website.

https://pit.evoting.ch/vote/#/legal-terms/009e088e0b56405ab8c5644db2cfdb8e
https://gitlab.com/swisspost-evoting
https://gitlab.com/swisspost-evoting

P020456 | E-voting web application 7

That being said, the scenario in which a third-party CA certificate would have been added to
the client's certificate store was also considered. However, the application also uses end-to-
end encryption at the application layer, which means that even if an attacker could intercept
the clear text data, he would not be able to get any exploitable information from it.

Apart from the Man-in-the-Middle attack scenario, the usual injection attacks were also
attempted within the requests that are sent by the client to the remote application. Here
again, the application is well protected as even a single character modification results in
generic error messages (mostly 401, 404, 403 and 412 error codes) being returned by the
server. Therefore, it was not possible to get any exploitable information from the remote
application either.

After considering all the usual attacks against web applications, the engineers explored other
less common avenues. As such, they analyzed the build process of the E-voting project and
especially the way it handles third-party dependencies. Indeed, the Secure Data Manager
relies on a few third-party open-source projects both for its client-side and server-side code
bases. Although it is not a vulnerability per se, it does represent a security risk as this code
should be considered potentially untrustworthy. A developer's account could be
compromised, and malicious code could be pushed to one of the third-party project
repositories in a so-called "supply chain attack". Unfortunately, there is no technical solution
that can prevent this type of attack. Therefore, the only way to prevent it would be to perform
a manual code review of each external library that is imported in the project.

In conclusion, no particular action needs to be taken in the short-term. However, a particular
attention should be paid to the third-party libraries being used as they might represent a
threat on the long-term.

P020456 | E-voting web application 8

VULNERABILITY SUMMARY

ID VULNERABILITY IMPACT PROBABILITY CVSS

P020456-1
Use of third-party libraries (supply
chain attack) ★★★☆ ★☆☆☆ 7.7

Explanations regarding impact, exploitation and CVSS scores can be found in chapter Complements

P020456 | E-voting web application 9

DETAILED RESULTS

VULNERABILITIES AND EXPLOITATION

P020456-1 USE OF THIRD-PARTY LIBRARIES (SUPPLY CHAIN ATTACK)

SCRT CVSS

Impact ★★★☆ Base 7.7

Probability ★☆☆☆ AV:N/AC:H/PR:H/UI:N/S:C/C:H/I:H/A:N

PREREQUISITES COMPROMISED ASSETS

» Malicious content inserted in a third-party
library

» Vote confidentiality

AFFECTED SYSTEMS

E-voting project

DESCRIPTION

The application relies on third-party libraries, either for its server-side or its client-side code
base. This a very common situation as it avoids reinventing the wheel whenever a reliable
package can just be imported into the project instead.

However, such a practice introduces new risks, especially for highly sensitive applications, as
one of the third-party packages could be compromised. This scenario is commonly referred to
as a "supply chain attack". As we have seen in the past, this may happen if a developer's
account on a code repository is compromised, and malicious code is inserted. In addition, code
integrity checks would fail to detect such a malicious modification as the code would be
modified directly at the source, prior to the deployment of the package.

P020456 | E-voting web application 10

EXPLOITATION

By inspecting the client-side JavaScript code of the application, we observe that it includes a
third-party project called "elliptic".

Third-party Elliptic JS library

As the description of the project states, it is an implementation of "fast elliptic-curve
cryptography in a plain JavaScript". This project is hosted on GitHub, and it is available at the
following URL: https://github.com/indutny/elliptic.

This is a very popular project as it is used by almost 7 million users and maintained by 25
contributors, which means that the probability that malicious code could be pushed on the
main branch without anybody noticing is low.

"Used by" and "contributors"

https://github.com/indutny/elliptic

P020456 | E-voting web application 11

However, this project also has its own third-party dependencies, which increase the attack
surface: https://github.com/indutny/elliptic/blob/master/package.json.

Elliptic dependencies

If an attacker were to compromise a developer's account, he could be able to insert malicious
JavaScript code that would be executed on client-side. This JavaScript code could get any
information about a voter's choices or even tamper with a vote directly.

Regarding server-side dependencies, the same concepts apply. In particular, every external
dependency retrieved with Maven and listed in the multiple pom.xml files might be subject
to similar supply chain attacks which could help an attacker to compromise the server and
thus, the privacy and integrity of the vote.

[..snip..]

<!-- Bouncy Castle -->

<dependency>

 <groupId>org.bouncycastle</groupId>

 <artifactId>bcprov-jdk15on</artifactId>

</dependency>

<dependency>

 <groupId>org.bouncycastle</groupId>

 <artifactId>bcpkix-jdk15on</artifactId>

</dependency>

<!-- jackson for json processing (this is used for annotations in DTOs) -->

<dependency>

 <groupId>com.fasterxml.jackson.core</groupId>

 <artifactId>jackson-annotations</artifactId>

</dependency>

<dependency>

 <groupId>com.fasterxml.jackson.core</groupId>

 <artifactId>jackson-databind</artifactId>

</dependency>

<dependency>

 <groupId>org.apache.xmlgraphics</groupId>

 <artifactId>batik-css</artifactId>

 <version>${org.apache.xmlgraphics.version}</version>

</dependency>

[..snip..]

https://github.com/indutny/elliptic/blob/master/package.json

P020456 | E-voting web application 12

However, there is one slight difference though as the server-side code also relies on a third-
party library which is not available through a well-known public repository. Indeed, while
building the project, we noticed that the Secure Data Manager requires the "PKCS11wrapper"
library for interacting with smart cards as explained in the documentation.

PKCS11wrapper

Although the security of public repository platforms such as GitHub is highly monitored, a
third-party website such as https://jce.iaik.tugraz.at might not be as secure.

POSSIBLE SOLUTIONS

Review the source code of third-party scripts and libraries

The use of Subresource Integrity is efficient only in the case where JavaScript code is included
from a third-party domain. It does not protect against malicious modifications of the code in
the code repository itself. In this particular case, the only solution is to perform a code review
to ensure that no malicious code was inserted. Another review should be performed every
time the code is updated to a new version. It should also be noted that SRI does not protect
against Man-in-the-Middle attacks as the integrity value can be updated after modifying
the code. Indeed, this value is just a hash of the code, not a cryptographic signature.

REFERENCES

» https://developer.mozilla.org/en-US/docs/Web/Security/Subresource_Integrity

https://gitlab.com/swisspost-evoting/e-voting/e-voting#install-manual-third-party-dependencies
https://jce.iaik.tugraz.at/

P020456 | E-voting web application 13

COMPLEMENTS

LEGEND

SCRT SCORE

For each vulnerability discovered and detailed in this report, SCRT provides a threat
estimation. This estimation is done according to two indicators: Impact and Probability.

IMPACT
IMPACT OF THE VULNERABILITY IN CASE OF SUCCESSFUL EXPLOITATION
("HOW BAD?")

☆☆☆☆ ★☆☆☆ ★★☆☆ ★★★☆ ★★★★

N/A Weak Medium High Critical

PROBABILITY
PROBABILITY THAT THE VULNERABILITY WILL BE DISCOVERED AND
EXPLOITED BY AN ATTACKER?

☆☆☆☆ ★☆☆☆ ★★☆☆ ★★★☆ ★★★★

N/A Low Medium High Very high

It is however important to keep in mind that this evaluation is only based on information
available to SCRT engineers at the time of the audit. The auditors do not necessarily know all
the details about vulnerable machines or systems. Consequently these ratings have to be
reconsidered by depending on the importance and exact characteristics of affected systems.

CVSS SCORE

On top of the SCRT score, an other metric is calculated for each vulnerability using the CVSS
system.

CVSS is a vulnerability scoring system designed to provide an open and standardized method
for rating IT vulnerabilities. CVSS helps organizations prioritize and coordinate a joint response
to security vulnerabilities by communicating the base, temporal and environmental properties
of a vulnerability. More information about the CVSS scoring system can be found here :
https://www.first.org/cvss/user-guide

CONTEXT

The context of each vulnerability is presented by describing its prerequisites and compromised
assets. The prerequisites detail what is required by an attacker to be able to exploit the flaw,
such as the exploitation of a previous vulnerability or the use of social engineering. The
compromised assets list the assets that are directly impacted by the exploitation of the
vulnerability.

https://www.first.org/cvss/user-guide

P020456 | E-voting web application 14

ADDITIONAL ATTACKS

The following attacks are not usually performed during penetration tests, as their success is
greatly dependant on a variety of external factors, which cannot be controlled during the
tests. However, certain discovered vulnerabilities may depend on the successful exploitation
of such an attack, which is why they are described here.

 MAN-IN-THE-MIDDLE

A Man-In-The-Middle attack refers to a situation where the attacker is able to eavesdrop and
alter the data transmitted between the client and the server, without any of them being able
to notice the modification. An adversary can undertake this attack only if he has access to
specific locations on the network. Effective attacks can be launched from the local network
(for example ARP Spoofing or DNS Poisoning). Additionally, any node of the network through
which the client-server communication flows can be used to undertake a Man-In-The-Middle
attack. ISPs as well as governments are therefore often considered as having the possibility
(legitimately or not) to undertake these kinds of attacks.

 SOCIAL ENGINEERING

Users are frequently one of the attacker's primary target. Sophisticated attacks (phishing,
phoning, ...) are often developed in order to manipulate victims. When stated as a prerequisite
to a vulnerability, social engineering means that an attacker must have some kind of contact
with his victim in order to lure him into performing an action desired by the attacker, such as
clicking on a link or opening a file attached to an e-mail.

RISK CALCULATION

Each risk presented in this report is based on the impact and probability of exploitation
(estimated by SCRT) of one or several vulnerabilities. The risk level is calculated by using the
following table for the most severe vulnerability related to the risk.

 Overall Risk Severity

Impact

CRITICAL High High Critical Critical

HIGH Moderate Moderate High Critical

MODERATE Low Moderate Moderate High

LOW Low Low Moderate High

 LOW MODERATE HIGH CRITICAL

 Probability

For more information on the impact and probability of exploitation of each risk, please refer
to the technical details of the corresponding vulnerability.

P020456 | E-voting web application 15

SCRT also provides an estimation of the effort required to mitigate the various risks. This is
an estimate based on SCRT's experience and can obviously be different within the specific
context of a given company.

ATTEMPTED ATTACKS

ATTACK SCOPE

The attacks performed by SCRT engineers during this audit cover the spectrum of attacks that
could be attempted by an actual attacker against the targeted information system. These
attacks thus cover "system" aspects (focused on machines and operating systems) as well as
"applicative" aspects (focused on applications running on top of the system).

As an example of this layered attack approach, consider a (poorly coded) web application
vulnerable to SQL injection, deployed on a correctly configured and patched web server. The
"system" components of this application (the OS, the web server, DB engine...) do not suffer
from any known vulnerability. However the "applicative" layer is flawed and thus
compromises the security of the whole system.

SEARCH FOR KNOWN VULNERABILITIES (VULNERABILITY SCANNING)

Software development is a complex task, especially when developing very large applications
such as operating systems, and often requires scores of developers in different teams working
autonomously. It is therefore not surprising that these applications contain many hidden bugs
and vulnerabilities (often due to development errors), even after they are put on the market.

These flaws, when they are then discovered – by security researchers for example or by the
companies themselves – are then often published to inform end-users and push developers
to correct them. Many flaws are discovered and published daily, which are then generally
followed by the release of a new patch for the affected piece of software.

However, these publications do not only interest the developers trying to correct the flaws.
They are also very interesting for hackers as they reveal vulnerable pieces of code in the
software. Sometimes these flaws allow hackers to gain remote access on a machine. In parallel
with the release of new patches, specialized web sites often release exploit code for these
same vulnerabilities. These are small programs which exploit the vulnerability and are often
very easy to use. This makes it very important to apply patches as quickly as possible. Not
doing so leaves the door open to malicious hackers who may exploit the vulnerabilities to gain
access to the affected machine.

System administrators must therefore take extreme care in making sure that all systems are
up to date and that the accessible services are not prone to known vulnerabilities. This is a
constantly ongoing job as a seemingly secure machine one day may suddenly become the
target of attacks the next after the publication of a new vulnerability affecting it.

To check whether any of the systems within the scope are vulnerable to known vulnerabilities,
SCRT engineers will research information based on the reported versions of software
discovered previously.

P020456 | E-voting web application 16

This is partly done with the help of automated scanners whose main goal is precisely the
discovery of known vulnerabilities. However, a vulnerability scan is only a small part of a
security audit and – on its own – cannot substitute a manual audit.

NETWORK PROTOCOL ANALYSIS

Multiple services use clear-text protocols to communicate. This means that data is not
encrypted before being sent on the network, sometimes even while sending credentials. In
this context it is often possible for an attacker to sniff network traffic in hope of discovering
clear-text user names and passwords.

This is also true for many web applications that do not use HTTPS, or do not implement it in a
secure way, even when they deal with sensitive information.

The level of security applied to the communications of a given service is therefore an
important part of its security and must also be subjected to analysis.

WEAK AND DEFAULT PASSWORDS DISCOVERY

Many services used on a network are protected by a password. These can be remote access
services such as SSH, FTP or private sections of a web site, for example, an administration
panel.

In most cases, access to these secure areas will allow an attacker to gain access to sensitive or
confidential information and in some cases compromise the machine entirely. For this reason
it is important that the passwords be secure enough to stop an attacker from gaining illicit
access. Indeed, however secure an application may be, if a user or administrator decides to
use a weak password that can easily be guessed by an attacker, the security level cannot be
guaranteed. It is extremely important that chosen passwords are not part of any dictionary,
as they are often used by attackers in an automated way to gain access to a service.

To check the security level of the passwords, SCRT engineers test default and weak passwords
on any service requiring authentication.

WEB APPLICATIONS

There are many different ways web applications may be attacked. New types of attacks are
regularly discovered allowing attacker to circumvent older security mechanisms, therefore
forcing developers to constantly improve their code to prevent these new attacks.

There is however a repository of the most commonly discovered and exploited vulnerabilities
in web applications. It is the Open Web Application Security Project's (OWASP1) TOP 10 which
mentions the following vulnerabilities (OWASP Top Ten 2013):

» Injection
» Broken Authentication and Session Management
» Cross-Site Scripting
» Insecure Direct Object Reference

P020456 | E-voting web application 17

» Security Misconfiguration
» Sensitive Data Exposure
» Missing Function Level Access Control
» Cross-Site Request Forgery
» Using Components with Known Vulnerabilities
» Unvalidated Redirects and Forwards

Depending on the context of the application and underlying infrastructure, the relevant
vulnerabilities will be tested. A couple of these most common flaws are detailed in the next
chapters.

However, vulnerabilities are not limited to what is published in the OWASP Top 10 and SCRT
engineers are more than capable of identifying flaws that are not necessarily well documented
thanks to their experience gained from years of penetration testing.

NETWORK SNIFFING

Within a local network, such as a corporate network, several different services are provided
for the users, such as file sharing, FTP servers, remote administration and so on. Many of these
services use clear-text protocols to communicate, meaning that data transiting on the network
is not encrypted. In some cases, even the user's credentials are sent in this way.

It is therefore possible for a user located on this network to intercept the network traffic in
order to gather credentials or confidential information. This is usually done with the help of
an ARP poisoning attack, which allows an attacker to make a targeted user believe he is the
user's gateway and make the gateway believe he is the end-user, which then leads to him
proxying all requests between the two.

Clear-text credentials can easily be found this way, but in cases where authentication details
are encrypted, the use of "cracking" tools comes in handy and will allow an attacker to break
any potentially weak passwords.

EXPLOITING VULNERABILITIES

One of the main differences between an intrusion test and a simple vulnerability scan, which
is too often referred to in the same terms, is the fact that an intrusion test will truly simulate
what an attacker may do when attacking a company.

Any vulnerability discovered during the audit are exploited by SCRT engineers as long as it is
actually exploitable and in line with the rules of engagement determined during the kick-off.

This is the only way to know how dangerous the vulnerability truly is. It will allow one to know
what kind of information an attacker may access by exploiting the flaw and whether he may
leverage it to attack other systems.

