

Examination of the Swiss Internet Voting

System

Audit scope 2a: Development process

22.03.2022 / v1.0FINAL

Work performed for:

Swiss Federal Chancellery
Political Rights Section
Federal Palace West Wing
3003 Bern

Examination of the Swiss Internet voting system - Audit scope 2A - v1.0FINAL

SCRT S.A., Morges (Switzerland) – 22.03.2022 2 / 57

Contact information

SCRT SA
Rue du Sablon 4
1110 Morges
Switzerland

T: +41 21 802 64 01
E: info@scrt.ch

Authors and contributors

Antonio Fontes Lead examiner

Stéphane Adamiste Reviewer

Sergio Alves Domingues Reviewer

mailto:info@scrt.ch

Examination of the Swiss Internet voting system - Audit scope 2A - v1.0FINAL

SCRT S.A., Morges (Switzerland) – 22.03.2022 3 / 57

Management summary

Scope and objective of the examination

The objective of this examination was to assess whether Swiss Post's development process

put in place for the development and maintenance of its e-voting system satisfies a subset of

requirements (audit scope 2a) set forth by the Federal Chancellery's ordinance on e-voting.

Methodology

The examiners looked for evidence of effort to satisfy said requirements, whether the

approach chosen by Swiss Post effectively aligns with what the examiners identified as good

practice, and whether the proposition offers a level of assurance that users and customers

could reasonably expect from the development process of the e-voting system.

The examination was performed during the second half of 2021 and data was obtained from

written evidence (i.e., formal procedures, specifications, documentation, reports and other

artefacts automatically generated by tools or programs) and oral statements (live

presentations and interviews with Swiss Post e-voting teams). The total workload for this

examination, including the edition of this report, is 120 hours.

Results

Six issues (findings) were identified and reported, and eleven recommendations for

improvement were formulated.

The findings reflect that a large amount of effort has been deployed by Swiss Post to ensure

that its development process satisfies the Federal Chancellery's requirements and responds

to high quality standards. Still, additional effort remains necessary to fully integrate what the

community currently recognises as the reference, or baseline, in terms of secure software

engineering practices. In particular:

» Improving the integration of secure systems engineering methods (Finding F-01)
» Improving the definition and assignment of security responsibilities (Finding F-02)
» Improving protection from third-party component risk (Finding F-03)
» Improving and centralizing the security documentation (Finding F-04)
» Improving quality control on security attestation tools and methods (Finding F-05)
» Increasing security attestation during earlier stages of the development process

(Finding F-06)

All findings were marked with the severity level 'moderate'. This is attributed to the fact that

each finding reflected either an incomplete satisfaction of a requirement or the presence of

mitigating factors, or compensating measures, which reduced the severity of the finding.

Examination of the Swiss Internet voting system - Audit scope 2A - v1.0FINAL

SCRT S.A., Morges (Switzerland) – 22.03.2022 4 / 57

Final note

Assuming the recommendations (or equivalent measures) will be implemented within

reasonable delay, the examiners consider the outcome of the examination to be generally

positive.

The examiners conclude this summary by thanking Swiss Post, and more particularly all those

who have been personally involved, for their cooperation and for the transparency

demonstrated throughout the entire duration of the examination.

Examination of the Swiss Internet voting system - Audit scope 2A - v1.0FINAL

SCRT S.A., Morges (Switzerland) – 22.03.2022 5 / 57

Table of content

1 Context ... 6

2 Methodology .. 7

2.1 General process ... 7

2.2 Collection of evidence .. 7

2.3 Findings .. 8

2.4 Severity of findings .. 8

2.5 Assumptions ... 8

3 Criteria.. 10

3.1 Federal Chancellery requirements... 10

3.2 Additional criteria: secure systems development lifecycle ... 13

3.3 Additional criteria: inclusion of third-party components .. 15

4 Findings .. 16

4.1 F-01 Insufficient integration of security in the software development lifecycle 16

4.2 F-02 Conflicting/ambiguous attribution of security responsibilities 19

4.3 F-03 Insufficient protection measures against malicious third-party components 22

4.4 F-04 Insufficient security documentation .. 25

4.5 F-05 Insufficient quality control over security attestation operations 27

4.6 F-06 Insufficient security testing and attestation .. 28

4.7 Summary of findings .. 30

4.8 Summary of recommendations ... 31

5 References ... 32

6 Appendixes ... 36

6.1 Observations .. 36

6.2 Audit scope criteria .. 48

6.3 Interview sessions log .. 49

6.4 Development process .. 49

6.5 Reference evidence documents .. 51

6.6 Request for additional information on risk management ... 54

6.7 Interview plan - development process (additional criteria) + developers 55

6.8 Interview plan - testing and quality requirements .. 56

6.9 Interview plan - quality assurance requirements .. 57

Examination of the Swiss Internet voting system - Audit scope 2A - v1.0FINAL

SCRT S.A., Morges (Switzerland) – 22.03.2022 6 / 57

1 Context

1. Electronic voting (hereafter referred to as: e-voting) was introduced in Switzerland

through multiple pilot schemes from 2004 onwards. A total of 15 cantons made e-voting

possible in over 300 trials, until early 2019. Two implementations were available: the system

made by the canton of Geneva and the system operated by the Swiss Post (initially developed

by Scytl). In June 2019, the canton of Geneva announced the withdrawal of its e-voting system

with immediate effect. It was followed in July of the same year by the announcement by Swiss

Post of the withdrawal of its e-voting system from operation to focus on improving the

solution. Since then, e-voting is not possible in Switzerland.

2. In June 2019, the Swiss Federal Chancellery (hereafter: Federal Chancellery) was

commissioned by the Federal Council to redesign a new trial phase, using “e-voting systems,

which are fully verifiable” [1]. This redesign of the trial phase focuses on four objectives:

1. Further development of the e-voting systems

2. Effective controls and monitoring

3. Increased transparency and trust

4. Stronger connection with the scientific community

3. A taskforce was set up to make proposals for the future of internet voting. To that end,

the Federal Chancellery invited experts from academia and industry to engage in a broad

dialogue on internet voting in Switzerland. After this dialog, the Federal Chancellery and the

cantons published a final report on the redesign and relaunch of internet voting trials, with a

catalogue of measures [2].

4. The Federal Council took note of the final report and commissioned the Federal

Chancellery to amend the legal bases of the Confederation. In April 2021, the Federal Council

opened a consultation procedure on the amendment to the legal bases, which was drafted

by the Federal Chancellery. A consultation procedure for the redesign of the e-voting trials

was initiated in April 2021 by the Federal Council. The redesign includes both a partial revision

of the Ordinance on Political Rights (PoRo) [3] and a complete revision of the Federal

Chancellery Ordinance on Electronic Voting (“VEleS”, or “OEV”) [4]. The OEV specifies, among

others, the requirements for authorising electronic voting, including the technical and

administrative controls for approving an e-voting system1.

5. The Federal Chancellery issued an audit concept for the examination of Swiss internet

voting systems [5] defining the foundations for assessing the compliance of electronic voting

systems with the draft OEV and its annex [6], as per chapter 26 of the annex of the draft OEV,

and for obtaining recommendations for improvements.

1 The criteria for the examination reported in this document is built on a subset of these controls.

Examination of the Swiss Internet voting system - Audit scope 2A - v1.0FINAL

SCRT S.A., Morges (Switzerland) – 22.03.2022 7 / 57

6. SCRT was mandated by the Federal Chancellery to assess the compliance of the Swiss

Post’s revamped e-voting system against some of the requirements of the draft OEV. The

present report focusses on the examination of the perimeter defined as follows in the audit

concept: Scope 2a - Development process.

2 Methodology

2.1 General process

7. The examination was based on SCRT’s information systems audit methodology. The

process specifies four-phases depicted in the figure below:

Figure 1 - Process

2.2 Collection of evidence

8. As a general principle, the examiners aimed at acquiring two types of evidence for each

requirement. Types of evidence included documents (e.g., documentation, test reports,

written instructions, etc.), statements (e.g., obtained during plenary sessions or during

interviews), and demonstrations (e.g., tools, scripts, configurations or process material shown

during interviews).

9. Part of the examination included reviewing documents classified as confidential by Swiss

Post and thus not released to the public. Motives for not disclosing these documents to the

public included either or both the a) preservation of the confidentiality of business processes

deployed at the organisation level and which may confer Swiss Post a competitive advantage

Examination of the Swiss Internet voting system - Audit scope 2A - v1.0FINAL

SCRT S.A., Morges (Switzerland) – 22.03.2022 8 / 57

on other actors, and b) the preservation of confidentiality of operational data (e.g., risk

control, infrastructure operations, etc.). Swiss Post confirmed to the examiners that these

documents remain accessible to the Cantons.

10. Unless specified otherwise, written evidence collected and reviewed during the

examination is referred in the bibliography of this report, with public links whenever possible.

Some sources, which were not made physically available to the examiners but shown on-

screen during live interviews with the examinees, are cited without reference.

11. Swiss Post provided the examiners an internal document mapping each Federal

Chancellery requirement with one or more corresponding documented evidences [7].

2.3 Findings

12. The examiners raised a finding when evidence provided by the examinee did not provide

satisfying assurance that the requirement is met (implicit miss) or when evidence provided

explicitly indicates that the requirement is not or partially satisfied (explicit miss).

2.4 Severity of findings

13. The examiners specified three severity levels, as follows:

» High severity - The finding identifies a failure to produce evidence of satisfying a
requirement.

» Moderate severity - The finding identifies a partial failure to produce evidence of
satisfying a requirement.

» Low severity - The finding identifies a notable opportunity for improvement or
optimisation.

14. Readers should note that the severity indicated in this report only reflects the opinion of

the examiners and could be subject to re-evaluation by relevant parties.

2.5 Assumptions

2.5.1 Trustworthiness of statements

15. The examiners assume that the examinees were completely honest and transparent when

providing answers to the examiners’ assessment questions. Although several proofs of testing

were shown, no observation of the actual implementation of the OEV’s requirements within

the e-voting system was carried out to verify the accuracy of the examinees’ statements.

2.5.2 Trustworthiness of security measures

16. The examiners assume that the security measures described in the documents provided

as evidence in the context of the present examination are implemented and are effective. No

verification of the actual implementation effectiveness of the OEV’s requirements within the

Examination of the Swiss Internet voting system - Audit scope 2A - v1.0FINAL

SCRT S.A., Morges (Switzerland) – 22.03.2022 9 / 57

e-voting system (e.g., security testing, vulnerability assessment, penetration test, etc.) was

carried out within the scope of this examination to verify the accuracy of the statements made

in the security documents.

2.5.3 Segregation of the development environment

17. The examiners assume that the examinee has successfully segregated the e-voting

development environment from other environments, including other environments related

to the e-voting system. In this context, segregation is defined as follows:

» Systems, service accounts and users with permissions to approve changes to the
source code, or any of its embedded dependencies, cannot tamper nor access further
e-voting environments (e.g., release, production)2,3.

» Systems, service accounts and users with any permission into the development
environment are only granted permissions (e.g., read, create, modify, delete, etc.)
strictly required to accomplish their duties and on resources over which their duties
are expected to be carried out.

» Systems, service accounts and users that have not explicitly been identified and
authorised as contributors to the development environment do not have access to the
development environment, including in particular, its code and configuration
repository (configuration management system), and its build systems.

2.5.4 Boundaries to the development process

18. The examiners considered, as parts of the "development process", all steps necessary to

produce the artifacts required to satisfy a change request to the e-voting system, including

tools, people, and methods.

The following were considered as part of the development process:

» Translating a change request into functional and technical requirements,
» Establishing a design or architecture change proposal to satisfy the change request,
» Implementing the proposal (e.g., identifying, selecting and importing/including third

party components, writing new source code or modifying existing source code, etc.),
» Converting or packaging the resulting work into their final state (e.g., builds, binaries,

components, documents) and making them available to subsequent operations (e.g.,
release to third parties, release to production, etc.).

2 Of course, this excludes situations in which authorised members of the development environment access the
e-voting production systems strictly as end users to exercise their voter rights.
3 The examiners noted that developers can access the development environment remotely and from untrusted
locations using a VPN connection. The assumption of segregation typically operates on the hypothesis that this
segregation has been enforced at the infrastructure level (i.e., only authorised users and devices can approve
change to the source code).

Examination of the Swiss Internet voting system - Audit scope 2A - v1.0FINAL

SCRT S.A., Morges (Switzerland) – 22.03.2022 10 / 57

The following were not considered as part of the development process:

» Any operation, individual or system involved prior to a change request being entered
into the master backlog of the e-voting system.

» Any operation, individual or system involved after the requested artefacts have been
released and assembled in a final state (e.g., documents, binaries, bytecode, packages,
extensions, modules, etc.) and made available to further operations (e.g., deployment
for testing, analysis or acceptance outside the development environment,
deployment into production, etc.).

3 Criteria

This section summarizes the requirements on which the examination was performed.

3.1 Federal Chancellery requirements

19. The following tables4 enumerate the 17 requirements set forth in the criteria for scope 2A

("assess the development process") of the concept for examining Swiss internet voting

systems [5]5.

3.1.1 Development process and lifecycle requirements

Key Requirement

24.1.1 A life cycle model is defined. The life cycle model:

» is used for the development and maintenance of the software (a);
» provides for the necessary controls during the development and maintenance of

the software (b);
» is documented (c).

24.1.2 A list must be made of the development tools used and configuration options chosen
for the use of each development tool.

24.1.3 The documentation for the development tools includes:

» a definition of the development tool (a);
» a description of all conventions and directives used in the implementation of the

development tool (b);
» a clear description of the significance of all configuration options for using the

development tool (c).

24.1.4 The implementation standards to be applied must be specified.

Table 1 - E-voting requirements: lifecycle

4 In this section, the requirements are regrouped per topic. The grouping reflects the examiners' interpretation
of the requirements and may not reflect that of the Swiss Federal Chancellery.
5 The requirements were grouped by topic by the examiners. The groups not necessarily reflect the Federal
Chancellery's vision.

Examination of the Swiss Internet voting system - Audit scope 2A - v1.0FINAL

SCRT S.A., Morges (Switzerland) – 22.03.2022 11 / 57

3.1.2 Software security documentation requirements

Key Requirement

24.1.20 Software development security documentation includes:

» a description of the physical, procedural, personnel, and other security measures
necessary to protect and ensure the integrity of the design and implementation of
the software in its development environment (a);

» evidence that the security measures provide the necessary level of protection to
preserve the integrity of the software (b).

Table 2 - E-voting requirements: software security documentation

3.1.3 Quality assurance requirements

Key Requirement

24.5 Regular and objective checks are carried out to ensure that the processes carried out
and the associated work products comply with the description of the processes,
standards and procedures to be implemented (a).

Deviations are followed up until they are corrected (b).

Table 3 - E-voting requirements: quality assurance

3.1.4 Configuration management system requirements

Key Requirement

24.1.14 The software is provided with a unique identification.

24.1.15 The configuration management documentation includes:

» a description of how configuration items are identified (a);
» a configuration management plan describing how the configuration management

system will be used in the development of the software and the procedures that
will be followed for the adoption of changes or new elements (b);

» evidence that the procedures for adoption provide for adequate review of changes
for all configuration items (c).

24.1.16 The configuration management system:

» uniquely identifies all configuration items (a);
» provides automated measures to ensure that only authorised changes

are made to configuration items (b);
» supports the development of the software through automated procedures (c);
» ensures that the person responsible for accepting the configuration

item is not the same person who developed it (d);
» identifies the configuration items that make up the security functions (e);
» supports verification of all changes to the software using automated

procedures, including logging of the author and the date and time of
the change (f);

» provides an automated method for identifying any configuration
items that are affected by a change to a particular configuration item (g);

» can identify the version of the source code on the basis of which the
software is generated (h).

Examination of the Swiss Internet voting system - Audit scope 2A - v1.0FINAL

SCRT S.A., Morges (Switzerland) – 22.03.2022 12 / 57

24.1.17 All configuration items are inventoried in the configuration management system.

24.1.18 The configuration management system is used in accordance with the
configuration management plan.

24.1.19 A configuration list is created that contains the following items:

» the software,
» evidence of the checks required to ensure security compliance,
» the parts that make up the software,
» the source code,
» reports on security flaws and on the status of their correction (a).

For each element relevant to security functions, the developer is named (b).

Each element is uniquely identified (c).

Table 4 - E-voting requirements: configuration management system

3.1.5 Testing requirements

Key Requirement

17.1 The functions relevant to the security of the system (security functions) are tested and
the tests are documented with test plans and expected and actual test results. (a)

The test plan (b):

» specifies the tests to be performed;
» describes the scenarios for each test, including any dependencies on the results of

other tests.

The expected results must show the results that are expected if the test is successfully
executed. (c)

The actual results must be consistent with expected results. (d)

17.2 An analysis must be made of the test coverage. This includes evidence that:

» the tests defined in the test documentation match the functional specifications of
the interfaces (a);

» all interfaces have been fully tested (b).

17.3 An analysis must be made of the depth of testing. This includes evidence that:

» the tests defined in the test documentation match the subsystems related to
security functions and modules that play a role in ensuring security (a);

» all subsystems related to the security functions mentioned in the specifications
have been tested (b);

» all modules that play a role in ensuring security have been tested (c).

25.13.3 The integration tests cover all modules.

25.13.4 The software tests cover all modules.

Table 5 - E-voting requirements: testing

Examination of the Swiss Internet voting system - Audit scope 2A - v1.0FINAL

SCRT S.A., Morges (Switzerland) – 22.03.2022 13 / 57

3.1.6 Transparency requirement

Key Requirement

8.12 Known flaws and the need for action associated with them are communicated
transparently.

Table 6 - E-voting requirements: transparency

3.1.7 Systematic correction of flaws requirements

Key Requirement

24.4.1 Processes are defined for the correction of flaws. The processes include:

» documentation of specific aspects, in particular with regard to the traceability of
flaws for all versions of the software, and of the methods used to ensure that
system users have information on flaws, corrections and possible corrective actions
(a);

» the obligation to describe the nature and impact of all security flaws, information
on the status of work to find a solution and the corrective measures adopted (b);

» a description of how system users can make reports and enquiries about suspected
flaws in the software known to the software developers (c);

» a procedure requiring a timely response and automatic dispatch of security flaw
reports and appropriate corrective actions to registered system users who may be
affected by the flaw (d).

24.4.2 A process is defined for handling reported flaws (a).

This process ensures that all reported and confirmed flaws are corrected and that the
procedures for correction are communicated to system users (b).

It provides for arrangements to ensure that the correction of security flaws does not
give rise to new security flaws (c).

24.4.3 Policies must be defined for the reporting and correction of flaws.

These include:

» instructions on how system users can report suspected security flaws to the
developer (a);

» instructions on how system users can register with the developer to receive reports
of security flaws and the corrections (b);

» details of specific contact points for all reports and inquiries on security issues
concerning the software (c).

Table 7 - E-voting requirements: systematic correction of flaws

3.2 Additional criteria: secure systems development

lifecycle

20. A central part of the work consisted in evaluating the development process put in place

by Swiss Post for its e-voting system. To limit potentially ambiguous interpretations of what

could qualify as the OEV requirement "life cycle model, which provides for the necessary

controls during maintenance and development of the software" [6, p. 33], the examiners

derived an interpretation of "necessary controls" based on the following references:

Examination of the Swiss Internet voting system - Audit scope 2A - v1.0FINAL

SCRT S.A., Morges (Switzerland) – 22.03.2022 14 / 57

» Security software lifecycle requirements and assessment procedures (v1.0), PCI [8],
» Application software security controls, Critical security controls (v.8), CIS [9],
» Fundamental practices for secure software development (third edition), SAFECode

[10].
» SAMM - Software assurance maturity model assessment tool (v1.5), OWASP [11].

21. The characterisation of "necessary controls" is summarised as follows:

Organisational measures:

» The organisation has appointed a security champion within each development team,
which, among others, acts as a security liaison and leader between the development
team and the organisation's security structures,

» The organisation established interfaces between the development team and the
organisation's information security structures and with external security advisor(s),

» The organisation established interfaces with its incident response structure,
» The organisation ensures that personnel involved in the design, construction or

attestation of the system attended role-based security awareness and training.

Operational enablement measures:

» A catalogue of threats, with their respective controls or countermeasures, and status
(e.g., mitigated, not mitigated, etc.), is documented and maintained,

» Security requirements are documented,
» Secure design principles or secure architecture baseline requirements are

documented and integrated in the development process,
» Changes to the system are subject to a threat assessment (e.g., threat modelling,

abuse cases, attacker stories, etc.) aimed among others at identifying potential and
relevant threats and identifying appropriate countermeasures,

» Coding guidelines, or equivalent, are documented. In particular, they propose
standardised responses to well-known causes of risk and error (e.g., input
canonicalization and validation, output encoding, command interpreter query
parameterisation, filesystem access, database access, protected storage of sensitive
data or secrets, etc.),

» High-risk code is identified as such and subject to extended review (e.g., manual
review or testing),

» Vulnerability management is integrated and performed throughout the entire
development process with the support of adequate tools and processes,

» Source code, including all relevant adjacent artifacts, released to customers is
centralised, versioned, and protected from unauthorised access.

Attestation measures:

» Change requests are subject to standardised or routine security verification (e.g.,
security checklist in definition of ready).

» New code is tested for well-known vulnerabilities and errors (aka, source code review,
static analysis, etc.) as well as existing code (to mitigate regressions) prior to release.

» Third-party components are vetted against well-known threats prior to being
integrated into the system.

Examination of the Swiss Internet voting system - Audit scope 2A - v1.0FINAL

SCRT S.A., Morges (Switzerland) – 22.03.2022 15 / 57

» Third-party components are inventoried and monitored for known issues or
vulnerabilities.

» The runtime is tested for well-known vulnerabilities and errors (e.g., dynamic/runtime
application security testing) prior to release.

» The security of the final system, both in its entirety and its individual high-risk
components, is regularly tested by independent actors through adequate methods
(e.g., external penetration testing, bug bounty, 3rd party expert review, etc.).

» Releases and all associated artifacts are certified, and their authenticity can be
independently verified (e.g., code or binary signing, etc.),

3.3 Additional criteria: inclusion of third-party components

22. Due to the extensive use of this-party components in the e-voting system, the examiners

also derived an interpretation of "necessary controls" for the use and inclusion of third-party

components as part of the software engineering process. The following reference was used

to derive requirements:

» Managing security risks inherent in the use of third-party component, SAFECode [12].

23. The characterisation of "necessary controls", in the context of third-party components, is

summarised as follows:

Organisational measures:

» The organisation conducts a standardised risk assessment prior to integrating a third-
party component into the system.

Operational enablement measures:

» Threats derived from the use and inclusion of third-party components in the software
application are identified and documented, and adequate countermeasures or
controls implemented wherever relevant and/or necessary.

Attestation measures:

» Third-party components are tested for known vulnerabilities or malicious activity,
both prior to their inclusion in the system and after (monitoring).

Examination of the Swiss Internet voting system - Audit scope 2A - v1.0FINAL

SCRT S.A., Morges (Switzerland) – 22.03.2022 16 / 57

4 Findings

4.1 F-01 Insufficient integration of security in the software

development lifecycle

Federal Chancellery requirement

Key Requirement

24.1.1 A life cycle model is defined. The life cycle model:

» is used for the development and maintenance of the software (a);
» provides for the necessary controls during the development and maintenance of

the software (b);
» is documented (c).

Severity

24. MODERATE.

Rationale

25. Third-party material used to evaluate the development process of the Swiss Post e-voting

program reflects a common paradigm: security should be addressed at all stages of the

development process [8, p. 24], [9, p. 53], [10, p. 6]. Our examination indicates that Swiss Post

started to implement this paradigm in the e-voting system development process (see

appendix: Observations) but controls appear to be yet missing, in particular with artefacts

that do not directly associate to the voting protocol. While the protocol itself appears to have

been subjected to accrued scrutiny during its design phase (threat modelling, security

analysis, formal proof, including all associated documentation), the examiners could not

observe the same effort deployed on other parts or components of the voting system.

26. The examiners noted that quantifying the relationship, or impact, of an incomplete

integration of security in the software development process is a difficult endeavour paved

with uncertainties. A good illustration of this problem is the threat modelling activity: it is very

difficult to estimate accurately the likelihood of significant flaws or vulnerabilities running

undetected in the e-voting system after a development team fails to perform threat modelling

regularly.

One can easily claim, however, that failing to address security at all opportunities given

throughout the development process induces two consequences:

» Increased burden on remaining controls: as some controls are skipped, the
dependency towards the remaining controls (e.g., automated code scanning. bug
bounty, penetration testing, software composition analysis) increases and these
controls end up carrying a heavier burden. Although this could theoretically be
compensated by increasing the extent and scope of the remaining controls (see
finding F-06), all controls are not created equal towards each category of vulnerability

Examination of the Swiss Internet voting system - Audit scope 2A - v1.0FINAL

SCRT S.A., Morges (Switzerland) – 22.03.2022 17 / 57

(e.g., a penetration test may be less adequate to reveal cryptographic flaws than a
formal protocol review).

» Late discovery of flaws and increased costs: When the security strategy emphasises
controls that occur at later stages of the development lifecycle (e.g., security testing,
penetration testing, bug bounty), the discovery of certain types of flaws, such as
design flaws or poorly designed processes, typically occurs post-implementation, or
worse, post-release. The late discovery of flaws that were introduced at early stages
of the development process may induce both increased and unnecessary remediation
costs6, and unnecessarily complexify the prioritization of effort (i.e., deciding what
should be done 'next' in a context of limited resources and bandwidth).

27. The examiners noted that the Federal Chancellery provided Swiss Post with a reference

threat model. The catalogue includes 37 threats or attack scenarios, which establish a

baseline threat model for all components of the e-voting system [6, p. 24]. Swiss Post

demonstrated the integration of this threat catalogue into a formal validation instrument7

used to track responsible parties and their mitigation efforts deployed to address each threat

scenario.

Still, the examiners identified two potential weaknesses with the approach:

» Strong delegation of security testing to third parties: Swiss Post heavily relies on public
scrutiny through publicly accessible source code, quality reviews of the
documentation and the bug bounty program to gather insight on the security of the
voting system.

» Generalised response to threats: the threat catalogue is not evaluated for each
component or critical feature but rather towards the e-voting system, as a whole. The
examiners claim that this approach may prevent the identification of threats that only
affect specific categories of components.

28. The examiners noted that although the architects and developers have not been formally

trained for secure software engineering, they are encouraged to regularly attend internal

meetings that discuss systems security and to attend public cybersecurity conferences.

29. The examiners noted that submissions to the configuration management system (pull

requests) implement a four-eyes principle by requiring the approval of a second individual.

Consequently: a developer cannot modify the source code of the e-voting system without the

change operation being authorised by another developer or architect. Assuming the scenario

of a compromised developer account (threat entries 13.7, 13.10, 13.31, 13.37) [6, p. 24], this

6 The reader should note that the authors emphasized the distinction between flaws (inadequate design) and
vulnerabilities (implementation failures): while the late discovery of vulnerabilities tends to induce lower
remediation costs (e.g., topical modification of the source code or a configuration setting), failing to identify
flaws before release can induce design changes, which would require a complete re-validation of the voting
system or one of its components.
7 The document (Bruttorisiken_***.docx) is not publicly referenced as it was still classified as highly
confidential at time of the examination. Still, the examiners were given access to the document during the
examination.

Examination of the Swiss Internet voting system - Audit scope 2A - v1.0FINAL

SCRT S.A., Morges (Switzerland) – 22.03.2022 18 / 57

control constitutes an essential line of defence against attempts to insert malicious code in

the system.

30. The examiners noted the deployment of an extended set of measures to facilitate public

scrutiny, which may significantly enhance the overall potential to detect flaws or

vulnerabilities. These measures include:

» The disclosure of security documentation to the public,
» The disclosure of the source code of essential components to the public,
» A public penetration testing program,
» A bug bounty program.

Recommendation

31. [R.01] The examiners encourage Swiss Post to formally integrate publicly available

guidance, references or standards on secure development processes or lifecycles into its

existing e-voting software development process. This integration should allow Swiss Post to:

» Identity and select processes and activities typically required to establish a secure
development lifecycle,

» Share information and communicate on its adhesion to such guidance and its level of
integration,

» Benchmark its own activities and processes internally on a regular basis.

This effort will (should) primarily allow Swiss Post to better document its own adoption of

secure development practices to the public (see finding: F-04). Additionally, this effort will

(should) allow Swiss Post to demonstrate to the public that it has already implemented a

significant set of measures and controls commonly recommended in secure development

lifecycle guidance.

32. [R.02] The examiners encourage Swiss Post to organise role-based security training to all

personnel directly involved in the development or maintenance of the e-voting system.

Participants should be made aware of well-known threats and attacks to which the

development and maintenance operation, the deliverables and the overall infrastructure may

likely be exposed, in addition to threats provided by the Federal Chancellery [6, p. 24].

Additionally:

» Architects should be trained on methods to identify, anticipate, and address well-
known software threats prior to starting their implementation (e.g., secure software
architecture design, secure software engineering principles, threat modelling),

» Developers should be trained on methods to avoid well-known coding vulnerabilities
and errors (e.g., secure coding, defensive programming, security code review, etc.),
and to identify code areas that should be subject to formal security review,

» Project managers and product owners should be trained on more general topics such
as information security and risk management, understanding security and privacy

Examination of the Swiss Internet voting system - Audit scope 2A - v1.0FINAL

SCRT S.A., Morges (Switzerland) – 22.03.2022 19 / 57

requirements, and how security is typically integrated in agile development processes8
(e.g., one-time operations, every-sprint operations, regular operations, etc.).

33. [R.03] The examiners encourage Swiss Post to infuse threat modelling in its e-voting

system development and maintenance process. In particular, each development team,

including the product owner, should have access to an up-to-date list of threats to their

respective component or project and be given adequate resources to conduct regular

assessments on these threats. Alternatively, or additionally, the examiners recommend

integrating abuse cases in the e-voting system's development process, typically through the

use of attacker stories9.

34. [R.04] The examiners encourage Swiss Post to identify and document a minimal or

baseline set of security principles or standard responses to known and probable security

issues at various levels (e.g., design/architecture, coding, testing, etc.). These could typically

take the form of configuration/policy sets, banned functions/APIs, design principles, coding

standards, reference implementations, test plans, etc.

4.2 F-02 Conflicting/ambiguous attribution of security

responsibilities

Federal Chancellery requirement

Key Requirement

24.1.1 A life cycle model is defined. The life cycle model:

» is used for the development and maintenance of the software (a);
» provides for the necessary controls during the development and maintenance of

the software (b);
» is documented (c).

Severity

35. MODERATE.

Rationale

36. Based on their observations (see Appendix: Observations), the examiners claim that

assigning potentially conflicting priorities to the architect role increases her/his exposure to

conflicts of interest. In software engineering operations, this could translate into architecture

or design decisions being taken against fundamental systems security engineering principles.

8 Recommended read: "Agile, yes, but secure?" (Falk, Andreas, 2015), last available at:
https://owasp.org/www-pdf-archive/Owasp_stuttgart_agile_secure_20150803.pdf
9 Attacker stories: negative use cases triggered by an attacker or other source of threat, whose successful
resolution in the issue tracking system relies on the fact that the use case is or has become unfeasible or
impractical. Additional information at:
https://cheatsheetseries.owasp.org/cheatsheets/Abuse_Case_Cheat_Sheet.html

https://owasp.org/www-pdf-archive/Owasp_stuttgart_agile_secure_20150803.pdf
https://cheatsheetseries.owasp.org/cheatsheets/Abuse_Case_Cheat_Sheet.html

Examination of the Swiss Internet voting system - Audit scope 2A - v1.0FINAL

SCRT S.A., Morges (Switzerland) – 22.03.2022 20 / 57

Examples could include postponing or precipitating the refactoring of code involved in critical

operations, integrating a third-party library or API without a thorough vetting process, failing

to address a need to standardise or formalise a solution to a frequent problem, etc.

37. In addition to conflicting priorities, the examiners notice their dilution across multiple

individuals (multiple architects), which may unnecessarily make the measure of performance

more difficult and, in the examiners' opinion, reduce individual responsibility.

38. Multiple research and guidance materials [13], [14] suggest that the security champion

should be typically "conversant in the software development tools and methodologies used

in the team, in addition to specific secure software development and deployment skills" and

is proficient in "threat modelling and incident response". She or he also provides "the glue

between the organisation's security structures and development". The security champion

should be both someone who "wants to upgrade security [of the product]" and with "insight

into the project's internal kitchen" [15]. Later guidance [16] recommends software

development teams to identify a "security advisor" and to identify who is "responsible for

tracking and managing security for the product".

39. In addition to the risks identified earlier, the examiners claim that the absence of security

champions in each development team, and more precisely, the absence of the more technical

skills specifically associated with secure systems engineering10 could also evolve towards an

over-reliance or over-dependence on the efficiency of reactive vulnerability detection

mechanisms put in place at later stages of the development process.

Mitigating factor

40. Swiss Post's e-voting system development team reported having unrestricted access to an

external application security advisor who supports the team with technical advice and

reviews on secure software engineering and cryptography.

Recommendation

41. [R-05] The examiners encourage Swiss Post to formally appoint a security responsible, or

security champion, for each team in the e-voting system.

Duties of the security responsible could include, among others, the following:

» Stay up to date with known and emergent cybersecurity threats that could affect the
team, its processes, its tools, and its deliverables,

» Establish, document, and maintain the baseline threat model for the team or project,
» Support the team in identifying and proposing reasonable countermeasures to threats

that require mitigation,

10 E.g., identifying and deploying secure design and defensive coding principles, conducting architecture and
design threat modelling and assessments, reviewing critical source code for security vulnerabilities, identifying
abuse cases and positive/negative security testing scenarios, etc.

Examination of the Swiss Internet voting system - Audit scope 2A - v1.0FINAL

SCRT S.A., Morges (Switzerland) – 22.03.2022 21 / 57

» Support the team in establishing standards for designing secure features and writing
secure code, whether through its own internal effort or through the evangelisation of
the organisation's security standards,

» Help members of the team become autonomous in their individual ability to assess
whether a change request or any other work item should be further investigated,

» Contribute to the team's adoption of a baseline feature readiness and completion
standard that improves security (i.e., definition of ready, definition of done),

» Support the product owner's decision process with relevant cost-benefit analyses
regarding cybersecurity risk,

» Evangelise application security amongst the team,
» Contribute to establishing trusted interfaces between the team and third parties, both

internal (e.g., organisation's information security and incident response structures)
and external (e.g., user groups, communities, security experts, etc.).

Hesitations could typically arise on whether the security responsible should be appointed at

full-time (vs. part-time along with other responsibilities), and whether he or she should be an

active contributor to the project (vs. an external individual). It is the examiners' opinion that

the allocated time should reflect no more, and no less, than the time necessary to carry out

the assigned duties, which may typically vary depending on the team's size and work velocity.

Regarding the appointment of a third-party, it is the examiners' opinion that the security

responsible should be appointed from within existing members of the team, or from within

existing members of teams that work closely with the team he or she would be assigned to

(e.g., someone working on component A team could typically be appointed as security

responsible for both component A and component B teams).

Regarding conflicts of interest, the examiners advise against diluting the position amongst

multiple individuals in any given team, and against appointing a member of the team that

solely carries out a critical responsibility towards the team. More particularly, the security

responsible position should not be given to an architect that acts as the sole architect in a

team, or to a developer that is solely in charge of implementing security-critical features of

the product, when possible.

Examination of the Swiss Internet voting system - Audit scope 2A - v1.0FINAL

SCRT S.A., Morges (Switzerland) – 22.03.2022 22 / 57

4.3 F-03 Insufficient protection measures against malicious

third-party components

Federal Chancellery requirement(s)

Key Requirement

24.1.1

24.1.15

A life cycle model is defined. The life cycle model:

» is used for the development and maintenance of the software (a);
» provides for the necessary controls during the development and maintenance of

the software (b);
» is documented (c).

Severity

42. MODERATE.

Rationale

43. Based on their observations (see Appendix: Observations), the examiners identified an

increased focus on preventing the risk of vulnerable third-party components (TPCs) using

automated software composition analysis11. From a security point of view, the examiners

recommend Swiss Post to continuously consider two categories of TPCs, which could be

intentionally or accidentally embedded into the e-voting system:

» Malicious TPCs: components intentionally deployed by malicious actors. These
typically host hard-to-detect vulnerabilities or backdoors.

» Vulnerable TPCs: components unintentionally published with vulnerabilities, typically
because of poor development practices (e.g., insecure design, insecure coding,
insufficient testing).

Additionally, the examiners recommend assessing two threats in the context of e-voting:

» Backdoored components, where an unauthorised party has remote control over the
component's behaviour,

» Logic bombs, where a component is intentionally (attacks) or accidentally (errors) built
to execute unexpected or undesired logic once certain conditions are met (e.g., a time
delay, a network signature, a user input, etc.).

The actual vectors through which these threats could arise are numerous and would typically

include, at least:

» Malicious TPCs unknowingly chosen and imported by developers into the e-voting
system,

» Internally developed components being maliciously replaced by external components
(e.g., dependency injection attacks),

11 An extended introduction on software composition analysis is included in the appendix (Observations -
Development process).

Examination of the Swiss Internet voting system - Audit scope 2A - v1.0FINAL

SCRT S.A., Morges (Switzerland) – 22.03.2022 23 / 57

» TPCs being imported from trusted editors or sources, which have then unknowingly
published compromised software (e.g., following a supply chain attack, compromised
editor's infrastructure or developer accounts, etc.),

» TPCs that are granted permission to execute arbitrary commands upon their
installation or after instantiation at runtime,

» TPCs that collect and store sensitive information unbeknownst to the developers (e.g.,
unidentified or undocumented log trails, debug builds, etc.) or relay information to
third parties (e.g., relaying of pseudo-anonymised or pseudo-non-confidential data to
external monitoring or advertising systems, etc.)

44. The examiners recognise that monitoring TPCs for publicly known vulnerabilities or

malicious intent using automated checking of software bill of materials (SBOMs) constitutes

an essential control for mitigating TPC risk. Still, this approach covers the "publicly known"

spectrum of the threat, and fails to cover its "unknown / undisclosed" counterpart, as

illustrated below12:

Figure 2 - Security threat landscape - third-party components (TPCs)

45. Considering the above, the examiners claim that failing to implement adequate controls

to mitigate TPC risk increases the exposure of the e-voting system to uncontrolled behaviour

or unauthorised access.

Indeed, the insertion of a malicious TPC in the e-voting system could, in the examiners'

opinion, compromise both vote secrecy (i.e., the component could leak data) or the

availability of the voting system itself (i.e., the component could trigger anomalous behaviour

and trigger the interruption of the ballot).

Mitigating factor

46. Assuming the cryptographic protocol [17] implementation satisfies the requirements set

forth in the Federal Chancellery's ordinance on electronic voting [6], the examiners estimate

12 The ratio between the "publicly known" and "unknown/undisclosed" areas has been set arbitrarily.

The component hosts a
critical vulnerability (e.g.,
arbitrary code injection)

The component contains
bugs or errors not yet

known.

The component was intentionally
tampered by a malicious actor.

M
al

ic
io

u
s

V
u

ln
er

ab
le

Backdoor Logic-bomb

Public knowledge Unknown / undisclosed

Automated
SBOM checking

Missing/incomplete

Automated
SBOM checking

Missing/incomplete

Examination of the Swiss Internet voting system - Audit scope 2A - v1.0FINAL

SCRT S.A., Morges (Switzerland) – 22.03.2022 24 / 57

the likelihood of successfully compromising individual or universal verifiability properties of

the Swiss Post e-voting system, as the result of embedding a malicious or vulnerable TPC in

the system, as very unlikely, thanks to the multiple proofs and intermediate control

opportunities offered by the protocol along the chain of events.

Recommendation

47. [R-06] The examiners encourage Swiss Post to extend and formalise its position on third-

party component risk. In particular:

» Establish or update a reference threat model for the use of third-party components13.
This threat model would at least identify opportunities to reduce the exploitation of
publicly unreported backdoors or vulnerabilities in third-party components embedded
in the e-voting system, and entries to mitigate the successful ignition of unidentified
or undesired behaviour (e.g., faults, errors, bugs) through those components.

» Evaluate these threats and their associated risk under the regular risk assessment
methodology.

» Identify adequate controls and/or countermeasures to mitigate the threats for which
risk is above threshold.

» Track and report on the correct implementation of these controls and/or
countermeasures.

» Document the above (e.g., "usage of third-party components").

48. [R-07] The examiners encourage Swiss Post to formalise and document a third-party

component vetting procedure aimed at assessing its security risk. The procedure could,

among other things, assess14:

» The editor's likelihood and ability to maintain the component in the near future (e.g.,
number of employees / developers, longevity of the component, release cycle, etc.),

» The security documentation of the component (e.g., information on the development
process and security testing performed, etc.),

» Whether the component was likely reviewed or assessed by third parties,
» Alternatives in the case of a security failure in the component (e.g., ability to take over

the component's source code and maintain it, identifying alternate components, etc.)

13 On this topic, the examiners strongly recommend evaluating SLSA, a framework designed to help software
application owners and acquirers increase trust in the supply chain and reduce risk from supply chain attacks
[18], [19].
14 Examples of third-party component evaluation criteria can be found in referenced work (see: Criteria,
additional criteria: inclusion of third-party components).

Examination of the Swiss Internet voting system - Audit scope 2A - v1.0FINAL

SCRT S.A., Morges (Switzerland) – 22.03.2022 25 / 57

4.4 F-04 Insufficient security documentation

Federal Chancellery requirement(s)

Key Requirement

24.1.20 Software development security documentation includes:

» a description of the physical, procedural, personnel, and other security measures
necessary to protect and ensure the integrity of the design and implementation
of the software in its development environment (a);

» evidence that the security measures provide the necessary level of protection to
preserve the integrity of the software (b).

Severity

49. MODERATE.

Rationale

50. The examiners were given access to an extended amount of security documentation (see

Appendix: Observations - software security documentation) about the voting protocol, the

development process, types of testing and testing tools, and the architecture of the

operational environment, among others.

However, security assurance information is distributed across many documents and essential

information is still missing from the proposed evidence, such as:

» Threats to all components of the e-voting system, including their mitigation measures
and the status of these mitigations15,

» Standard security architecture and design principles,
» Coding standard, guidelines, or rules with instructions on how to address well-known

or common security threats,
» Security testing procedures (i.e., what is precisely subject to security testing, and how)

and code attestation procedures (i.e., how production confirms that the code is
legitimate).

» Protection measures set forth in the development environment to prevent
unauthorised access to the deliverables (e.g., code protection measures, developer
access protection measures, build environment protection measures, pipeline
environment protection measures, artifacts protection measures, protection
acquisition of third-party components, etc.)16.

15 As indicated in the observations (see Appendix: Observations - Security documentation), evidence of risk
management processes and documents produced at the organization level were shown to the examiners.
However, these documents failed to demonstrate an actual threat analysis specifically focused on the e-voting
system, including both its operational and non-operational processes and environments, in addition to the
default analysis provided by the Federal Chancellery [6, p. 24]
16 Equivalent documentation and evidence were produced for the production environment, this item aims at
extending these efforts to include the development environment, too.

Examination of the Swiss Internet voting system - Audit scope 2A - v1.0FINAL

SCRT S.A., Morges (Switzerland) – 22.03.2022 26 / 57

In the examiners' opinion, centralizing the information and completing it with how security

assurance is obtained prior to code release would help Swiss Post better demonstrate its

efforts and increase public trust over the overall process.

Recommendation

51. [R-08] The examiners encourage Swiss Post to centralize security relevant information on

its voting system software. For example, Swiss Post could produce a whitepaper on the

security of its voting system.

The examiners would recommend including the following information, among other things:

» The inventory of security requirements, which the system must satisfy,
» The list of assumptions, which were made on elements outside the control of Swiss

Post,
» A list of threats to the voting system and its components,
» Information on how these threats were or are mitigated by Swiss Post,
» Information on how security is attested throughout the entire system's lifecycle,

including not only during its development but also while in operation.

Examination of the Swiss Internet voting system - Audit scope 2A - v1.0FINAL

SCRT S.A., Morges (Switzerland) – 22.03.2022 27 / 57

4.5 F-05 Insufficient quality control over security attestation

operations

Federal Chancellery requirement(s)

Key Requirement

24.5 Regular and objective checks are carried out to ensure that the processes carried out
and the associated work products comply with the description of the processes,
standards and procedures to be implemented (a).

Deviations are followed up until they are corrected (b).

Severity

52. MODERATE.

Rationale

53. Through their observations (see Appendix: Observations - quality assurance), the

examiners noted a lack of processes and measures to assess the quality and performance of

security assurance methods and tools put in place in the development process.

In particular, the examiners noted that, although Swiss Post uses multiple internal (e.g.,

software composition analysis, automated code scanning, etc.) and external (e.g., code and

documentation publicly accessible, penetration tests, bug bounty) security assurance

mechanisms, limited processes seem to be implemented to assess whether the chosen

mechanisms work as expected or intended, and whether their efficiency could be improved.

Recommendation

54. [R-09] The examiners encourage Swiss Post to implement a procedure to assess the

efficiency (and effective operation) of its various security assurance tools and methods.

For example, a first iteration of such process could aim at:

» Establishing an inventory of security assurance mechanisms used during the
development process (and/or later). This would typically include tools and methods.

» Selecting tools or methods that should undergo continuous improvement. The
examiners recommend targeting scanning tools (i.e., static analysers, dynamic
analysers, software composition analysers, etc.) and the development process first.

Examination of the Swiss Internet voting system - Audit scope 2A - v1.0FINAL

SCRT S.A., Morges (Switzerland) – 22.03.2022 28 / 57

» Implementing a repeatable technique or method to evaluate the efficiency and/or
maturity of the tool17 or method18.

4.6 F-06 Insufficient security testing and attestation

Federal Chancellery requirement(s)

Key Requirement

17.2 An analysis must be made of the test coverage. This includes evidence that:

» the tests defined in the test documentation match the functional specifications of
the interfaces (a);

» all interfaces have been fully tested (b).

Severity

55. MODERATE.

Rationale

56. Through their observations (see Appendix: Observations - security testing), the examiners

noted strong evidence of testing at the coding stage of the process (static analysis) but a lack

of evidence of other forms of security testing, such as earlier testing activities (e.g.,

architecture or design security reviews or validations) and pre-release testing activities (e.g.,

dynamic/runtime application testing).

57. Both static and dynamic application testing platforms tend to promise complete coverage

of the code's execution graph. Still, full coverage remains difficult to achieve in practice due

to many variables (e.g., cyclomatic complexity thresholds, non-deterministic interfaces

between components, incorrect identification of taint data/data sinks, hardware limitations

or configured restrictions in the scanning engine, etc.) and a difficulty to capture certain types

of vulnerabilities. For this reason, combining both approaches (static + dynamic/runtime

testing) is generally recommended to reduce the risk of false negatives.

17 One approach involves inserting vulnerabilities (or vulnerable components) intentionally to validate the
capabilities of tools and methods to detect and report weaknesses. This method also helps assess depth &
coverage of testing (e.g., blending vulnerabilities in deeper or more complex sections of the code) and to
gather insight on which types of vulnerabilities may or may not be found (e.g., blending specific vulnerability
classes into the code). Methods can go from manual (e.g., developer inserts broken code manually) to
automated (e.g., build jobs that automatically insert vulnerable code snippets to ensure that automated
scanning tools will detect these). Safety mechanisms such as context- or input-dependent triggers [20] can be
implemented when testing third party attestation methods (e.g., penetration tests, bug bounties, etc.).
18 Examples of quality-oriented approaches to assess the integration of security in the development process
can be found in SAMM (software assurance maturity model) [11] and BSIMM (building security in maturity
model) [14], which are both publicly available, peer-reviewed, and can help teams and organisations
benchmark their development process against themselves or against other similar organisations.

Examination of the Swiss Internet voting system - Audit scope 2A - v1.0FINAL

SCRT S.A., Morges (Switzerland) – 22.03.2022 29 / 57

Mitigating factors

58. The lack of runtime/dynamic testing is partially mitigated by the exposure of the releases

to community testing efforts through the Swiss Post bug bounty program and by subjecting

approved releases to penetration tests. Although these testing methods have been regularly

proven to be fully capable of helping to identify undeterred flaws or vulnerabilities, even the

most critical ones, their performance remains highly variable and susceptible to the human

factor (e.g., availability of competent testers, curiosity of testers, reward model, etc.). As such,

they should not be considered systematic, and their coverage may vary ostensibly.

59. The examiners noted that these various validation efforts appear to be in place for

changes that affect or associate closely to the voting protocol, typically through requesting

assessments or assistance from an external security advisor.

Recommendation

60. [R-10] The examiners encourage Swiss Post to include systematic and repeatable security

validations at earlier stages of the development process of the e-voting system. These could

take place during design stage when processing change requests, and take the form of

controls (e.g., secure design guidelines) or a method, which must be formally validated

(typically, by a security champion, see finding F-02).

The examiners recognise that including such reviews systematically for all change requests

may be counter-productive and recommend using a risk-based approach. For example,

implementing a rapid risk assessment questionnaire would allow any team architect or

developer to rapidly assess whether a change request could pose a security risk and would

facilitate triage of requests that need to undergo a more formal security design review.

61. [R-11] The examiners encourage Swiss Post to generalise and leverage dynamic or runtime

security testing in the development process of the e-voting system. Most dynamic/runtime

security tools offer modes of operation specifically designed to perform testing with minimal

human intervention, thus allowing automation and integration in continuous integration and

delivery pipelines.

More particularly, the examiners recommend integrating two types of runtime testing

methods:

» Testing for well-known vulnerabilities, well-known attack classes and well-known
errors with security-focused dynamic application security scanners,

» Testing software components for accrued resistance to fault through fuzz testing [21].

Examination of the Swiss Internet voting system - Audit scope 2A - v1.0FINAL

SCRT S.A., Morges (Switzerland) – 22.03.2022 30 / 57

4.7 Summary of findings

Key
OEV
key(s) Finding Severity

F-01 24.1.1 Insufficient integration of security in the software
development lifecycle

Moderate

F-02 24.1.1 Conflicting / ambiguous attribution of security responsibilities Moderate

F-03 24.1.1 Insufficient protection from risky third-party components Moderate

F-04 24.1.20 Insufficient security documentation Moderate

F-05 24.1.15
24.5

Insufficient quality control over security attestation operations Moderate

F-06 17.2 Insufficient security testing Moderate

Table 8 - Summary of findings

Examination of the Swiss Internet voting system - Audit scope 2A - v1.0FINAL

SCRT S.A., Morges (Switzerland) – 22.03.2022 31 / 57

4.8 Summary of recommendations

Key
OEV
key(s) Recommendation Finding

R-01 24.1.1 Formalise the integration of security development lifecycle guidance
or best practices into the e-voting system's development process.

F-01

R-02 24.1.1 Ensure e-voting system personnel and stakeholders have received
adequate role-based training on secure systems engineering.

F-01

R-03 24.1.1 Integrate threat modelling, or equivalent, in early stages of the
development process.

F-01

R-04 24.1.1 Establish a baseline set of security principles or rules for each phase
of the development lifecycle (e.g., requirements, architecture
and/or design, coding, testing, build, deployment, etc.).

F-01

R-05 24.1.1 Establish a security champion program and appoint a champion in
each e-voting system development team.

F-02

R-06 24.1.1 Establish a reference threat model for the use of third-party
components in the e-voting system, maintained with the status of
implementation of chosen controls and countermeasures.

F-03

R-07 24.1.1 Establish a security vetting process for the selection of new third-
party components, and the review of existing ones, embedded in
the e-voting system.

F-03

R-08 24.1.20 Establish a central document that describes how security assurance
in the e-voting system is obtained (e.g., e-voting security
whitepaper).

F-04

R-09 24.5
24.1.15

Establish procedures to confirm, review and improve the correct
operation of security attestation measures, in particular automated
measures.

F-05

R.10 17.2 Establish procedures to review and/or validate design proposals
generated in response to change requests, prior to entering the
coding phase.

F-06

R.11 17.2 Establish or improve runtime/dynamic application security testing
procedures executed prior to release. For relevant components,
extend these procedures with additional fuzz testing.

F-06

Table 9 - Summary of recommendations

Examination of the Swiss Internet voting system - Audit scope 2A - v1.0FINAL

SCRT S.A., Morges (Switzerland) – 22.03.2022 32 / 57

5 References

[1] “Reorienting eVoting and ensuring stable trial operation,” www.egovernment.ch.
https://www.egovernment.ch/en/umsetzung/schwerpunktplan/vote-electronique/
(accessed Oct. 21, 2021).

[2] Swiss Federal Chancellery, Political Rights Section, “Redesign and relaunch of trials - Final
report of the Steering Committee Vote électronique (SC VE).” Nov. 30, 2020. Accessed:
Dec. 06, 2021. [Online]. Available:
https://www.bk.admin.ch/dam/bk/en/dokumente/pore/Final%20report%20SC%20VE_
November%202020.pdf.download.pdf/Final%20report%20SC%20VE_November%20202
0.pdf

[3] Swiss Federal Chancellery, Political Rights Section, “Partial revision of the Ordinance on
Political Rights and total revision of the Federal Chancellery Ordinance on Electronic
Voting (Redesign of Trials).” Apr. 28, 2021. Accessed: Dec. 06, 2021. [Online]. Available:
https://www.bk.admin.ch/dam/bk/en/dokumente/pore/Explanatory%20report%20for
%20consultation%202021.pdf.download.pdf/Explanatory%20report%20for%20consulta
tion%202021.pdf

[4] Swiss Federal Chancellery, “Federal legislation.”
https://www.bk.admin.ch/bk/en/home/politische-rechte/e-
voting/versuchsbedingungen.html (accessed Oct. 21, 2021).

[5] Swiss Federal Chancellery (FCh) - Political Rights section, “Audit concept for examining
Swiss Internet voting systems - v1.3.” May 18, 2021.

[6] Swiss Federal Chancellery, “Federal Chancellery ordinance on electronic voting (OEV).”
Apr. 28, 2021. [Online]. Available:
https://www.bk.admin.ch/dam/bk/en/dokumente/pore/OEV_draft%20for%20consultat
ion%202021.pdf.download.pdf/OEV_draft%20for%20consultation%202021.pdf

[7] Swiss Post, “UP2021 - Mapping List VEleS.xlsx.” Jul. 13, 2021.

[8] Payment Card Industry, “Secure software lifecycle (Secure SLC) requirements and
assessment procedures - PCI-SSF v1.0.” Jan. 2019.

[9] Center for Internet security, “CIS Controls Version 8,” CIS.
https://www.cisecurity.org/controls/v8/

[10] Software assurance forum for excellence in code (SAFECode), “Fundamental practices
for secure software development - 3rd ed.” Mar. 2018.

[11] Watson, Colin, Lynch, Aidan, Coblentz, Nick, Keary, Eoin, and Deleersnyder, Seba,
“SAMM Assessment toolbox v1.5 final.” OWASP, 2009. [Online]. Available:
https://github.com/OWASP/samm/tree/master/Supporting%20Resources/v1.5

Examination of the Swiss Internet voting system - Audit scope 2A - v1.0FINAL

SCRT S.A., Morges (Switzerland) – 22.03.2022 33 / 57

[12] Software assurance forum for excellence in code (SAFECode), “Managing security risks
inherent in the use of third-party components.” 2017.

[13] M. G. Jaatun and D. S. Cruzes, “Care and Feeding of Your Security Champion,” 2021,
pp. 1–7.

[14] BSIMM, “Building security in maturity model (BSIMM) Trends & insights report -
ver.12,” 2021. [Online]. Available: https://www.bsimm.com/download.html

[15] Alexander Antukh, “Security champions 2.0,” presented at the OWASP Bucharest
AppSec conference 2017, 2017. [Online]. Available: https://owasp.org/www-pdf-
archive/OWASP_Bucharest_2017_Antukh.pdf

[16] Microsoft, “Simplified Implementation of the Microsoft SDL.” Microsoft, Mar. 02,
2011. Accessed: Dec. 04, 2021. [Online]. Available: https://www.microsoft.com/en-
us/download/details.aspx?id=12379

[17] Swiss Post, “Protocol of the Swiss Post voting system, Computational proof of
complete verifiability and privacy - v.0.9.11.” Oct. 15, 2021.

[18] Kim Lewandowski and Mark Lodato, “Introducing SLSA, an End-to-End Framework for
Supply Chain Integrity,” Google Online Security Blog.
https://security.googleblog.com/2021/06/introducing-slsa-end-to-end-framework.html
(accessed Dec. 01, 2021).

[19] SLSA (“salsa”) is Supply-chain Levels for Software Artifacts. 2021. Accessed: Dec. 01,
2021. [Online]. Available: https://github.com/slsa-framework/slsa

[20] B. Dolan-Gavitt et al., “Lava: Large-scale automated vulnerability addition,” 2016, pp.
110–121.

[21] “Fuzzing,” Wikipedia. Jan. 03, 2022. Accessed: Jan. 05, 2022. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Fuzzing&oldid=1063609411

[22] Swiss Post, “Release management service e-voting, v1.02.” Jun. 25, 2021.

[23] Swiss Post, “Configuration management software development tools for e-voting
service - v.17.” Jun. 11, 2021.

[24] Swiss Post, “Software development process of the Swiss Post voting system,” GitLab.
https://gitlab.com/swisspost-evoting/e-voting/e-voting-documentation/-
/blob/fd5f9756cb633e683f144a6692e6e2ea1581406c/Product/Software%20developme
nt%20process%20of%20the%20Swiss%20Post%20voting%20system.md (accessed Nov.
18, 2021).

[25] Swiss Post, “Software development process of the Swiss Post voting system (Addition)
- v41.” Oct. 27, 2021.

[26] Jim Campbell, “Scrum Methodology: Breaking Down the Scrum Framework,” Jun. 05,
2020. https://scrumexplainer.com/scrum/scrum-methodology/ (accessed Dec. 12, 2021).

Examination of the Swiss Internet voting system - Audit scope 2A - v1.0FINAL

SCRT S.A., Morges (Switzerland) – 22.03.2022 34 / 57

[27] “JFrog Xray - Universal Component Analysis & Container Security Scanning,” JFrog.
https://jfrog.com/xray/ (accessed Dec. 28, 2021).

[28] Swiss Post, “SwissPost voting system architecture document - v.0.9.1.” Aug. 17, 2021.

[29] “Swiss Post - E-Voting bug bounty program,” YesWeHack #1 Bug Bounty Platform in
Europe. https://yeswehack.com/programs/swiss-post-evoting (accessed Oct. 31, 2021).

[30] Swiss Post, “Infrastructure whitepaper of the Swiss Post voting system,” GitLab, Nov.
15, 2021. https://gitlab.com/swisspost-evoting/e-voting/e-voting-documentation/-
/blob/master/Operations/Infrastructure%20whitepaper%20of%20the%20Swiss%20Post
%20voting%20system.md (accessed Dec. 04, 2021).

[31] Swiss Post, “Swiss Post e-voting documentation (home),” GitLab.
https://gitlab.com/swisspost-evoting/e-voting/e-voting-documentation (accessed Nov.
21, 2021).

[32] Swiss Post, “Test Concept of the Swiss Post Voting System,” E-voting documentation,
Nov. 15, 2021. https://gitlab.com/swisspost-evoting/e-voting/e-voting-documentation/-
/blob/master/Testing/Test%20Concept%20of%20the%20Swiss%20Post%20Voting%20S
ystem.md (accessed Oct. 31, 2021).

[33] “SonarQube (editor’s website).” https://www.sonarqube.org/ (accessed Dec. 05,
2022).

[34] “Burp Suite.” https://portswigger.net/burp (accessed Dec. 05, 2021).

[35] OWASP, “Software assurance maturity model (SAMM),” OWASP SAMM, 2020.
https://owaspsamm.org/ (accessed Dec. 08, 2021).

[36] Swiss Post, “Swiss Post e-voting - web portal,” Swiss Post. https://www.evoting.ch/en
(accessed Nov. 06, 2021).

[37] Swiss Post, “Issues · swisspost-evoting,” Swisspost-evoting.
https://gitlab.com/groups/swisspost-evoting/-/issues (accessed Nov. 15, 2021).

[38] Swiss Post, “Submitting findings (online form),” Evoting-Community. https://evoting-
community.post.ch/en/contributions/submitting-findings (accessed Oct. 31, 2021).

[39] Swiss Post, “Code of conduct,” E-voting documentation. https://gitlab.com/swisspost-
evoting/e-voting/e-voting-documentation/-/blob/master/CONTRIBUTING.md (accessed
Oct. 31, 2021).

[40] GitLab, “Confidential issues,” GitLab Docs.
https://docs.gitlab.com/ee/user/project/issues/confidential_issues.html (accessed Oct.
31, 2021).

[41] Swiss Post, “Ways to submit - Severity of findings,” E-voting documentation.
https://gitlab.com/swisspost-evoting/e-voting/e-voting-documentation/-

Examination of the Swiss Internet voting system - Audit scope 2A - v1.0FINAL

SCRT S.A., Morges (Switzerland) – 22.03.2022 35 / 57

/blob/master/REPORTING.md#user-content-severity-of-findings (accessed Oct. 31,
2021).

[42] Swiss Post, “Change management - v1.03.” Mar. 05, 2020.

Examination of the Swiss Internet voting system - Audit scope 2A - v1.0FINAL

SCRT S.A., Morges (Switzerland) – 22.03.2022 36 / 57

6 Appendixes

6.1 Observations

6.1.1 Development process and lifecycle

62. Swiss Post proposes documented evidence of its development lifecycle and maintenance

processes in:

» Release management concept for e-voting service [22]
» E-voting configuration management software development tools [23]
» Software development process of the Swiss Post voting system [24]
» Software development process of the Swiss Post voting system (addition) [25]
» ICT DEV - Architecture, processes and guidelines (no reference available)

63. The examiners recognise the definition and documentation of a software development

lifecycle, which includes more than thirty steps, as depicted in Appendix 8.2.

64. Swiss Post designed its e-voting system development and maintenance process based on

an agile-based software development methodology. The methodology is heavily inspired

from Scrum [26] and adaptations from Swiss Post have resulted in its own implementation

referred to as the Post Agile Methodology (PAM).

65. The process specifies multiple control gates ("quality gates") spread across all phases and

aimed at ensuring that requirements are met (e.g., QG-R1, QG-R2, etc.). In some

circumstances (when a release is "limited in size, has minor impact and associated risk is

small"), all gates may not necessarily be all enforced and "product management decides

which quality gates are conducted" [22, p. 6]. The process guarantees however that all gates

are enforced when change affects the "core product" and results in a "major or minor version"

[22, p. 6].

66. Each proposed feature or improvement can either be flagged for relevance "for IT security

(infosec)", and/or flagged for relevance for risk ("risk if the change is implemented / risk if the

change is not implemented"). The examiners did not identify documented evidence of the

criteria that qualifies when a feature will or will not be flagged, it is assumed that this event

occurs based on a per-case basis and contingent to the individual's own perceptions.

67. Several tools are deployed to support the development operation ("e-voting service

toolchain" [24]). These include among others a code versioning and control system

(Bitbucket) with access control and auditing capabilities, an automation server used for

achieving continuous integration and delivery (Jenkins), several unit testing frameworks

(xUnit, xRay test mgmt., Selenium) and an issue/ticketing and release management platform

(Jira). The overall testing strategy and framework is documented (see Appendix: Observations

- Testing).

Examination of the Swiss Internet voting system - Audit scope 2A - v1.0FINAL

SCRT S.A., Morges (Switzerland) – 22.03.2022 37 / 57

68. The continuous integration and delivery pipeline established by the development team

does not extend into production. This can be easily justified by the highly sensitive nature of

the system, as many additional steps, third-party verifications and attestations are required

prior to deploying releases into production. The examiners noted that Swiss Post replaced

manual operations with automation whenever possible and adequate.

69. The examiners noted that new source code is verified by static source code analysers

(SonarQube, Fortify) before its release. These tools are designed to automatically check

source code for quality issues and known security vulnerabilities and errors.

70. The examiners noted that Swiss Post has implemented a software composition analysis

(SCA) 19 sub-step in the build phase [25, p. 23] of its e-voting system development process.

The tool [27] inventories third-party components20 (TPCs) embedded in the e-voting system

and is configured to report on possible security and licensing policy violations, thus likely

offering an effective control against vulnerable third-party components.

71. The examiners noted that, although TPCs are monitored for known security

vulnerabilities, Swiss Post failed to produce evidence of a satisfying process on the following:

» How Swiss Posts protects itself from malicious TPCs both prior to their inclusion and
after their inclusion into the e-voting system,

» How existing TPCs were assessed and how will future TPCs be assessed, in addition to
scanning for known vulnerabilities and licensing violations,

» How violations, which cannot be resolved with an update of the component, will be
addressed.

72. Although security appears to be widely recognised as paramount to the success of the

project by all persons interviewed, the examiners noted that Swiss Post has not formally

specified and assigned responsibilities related to the product's security to all individuals

involved in the product development and maintenance. This is discussed in more detail in

finding F-02.

19 Software composition analysis (SCA) is the process through which one gains visibility over TPCs bundled into
a software application. An efficient implementation of SCA not only inventories libraries explicitly imported by
developers, but also reveals hidden sub-components, which could have been nested in TPCs themselves, often
without knowledge of the component's publisher. SCA facilitates the production of the software bill of
materials (SBOM), an inventory of components of which a software application is made. An SBOM typically
includes unique component identifiers and their respective version. This enables an automated validation of
components against various databases to detect policy violations. Modern SCA tools typically propose three
types of policies to help application owners mitigate three risks:

- Licensing policies (e.g., identify components that enforce a licensing scheme which is incompatible with the
licensing set forth in the software application),

- Security policies (e.g., identify components that have been reported vulnerable or malicious),
- Lifecycle policies (e.g., identify components that have reached or are nearing end-of-support by their

editor).
20 Third-party components: pre-made software building blocks (libraries, APIs, frameworks, etc.) imported or
embedded into the e-voting system.

Examination of the Swiss Internet voting system - Audit scope 2A - v1.0FINAL

SCRT S.A., Morges (Switzerland) – 22.03.2022 38 / 57

73. The examiners were unable to assess with confidence the actual level of maturity of the

procedure to perform dynamic or runtime security testing tasks. Although a tool is mentioned

(Burp Suite), the examinees failed to obtain conclusive evidence on whether this step is

integrated and at what maturity level it is performed.

74. The examiners noted the absence of a formal threat modelling or abuse case identification

activity, or equivalent, within the e-voting system project. Threat modelling can typically help

both the development team and the product owner identify how a feature could be attacked

or abused by various threat agents, and how it could be mitigated, prior to beginning its

implementation. The use and inclusion of abuse cases (or attacker stories) as part of the

regular development process was not identified either.

75. The examiners noted that guidance on the system's design or architecture security

appears to be heavily focused on the cryptographic protocol of the e-voting system [17].

Additional information on how security impacted the design or development can be found in

the system's reference architecture documentation, such as "architecture principles" [28, p.

49]. Still, the examiners note the absence of a formal secure design/architecture guideline or

standard principles. The same limitation applies to secure coding guidelines for the

developers, where only guidance on how to perform "argument checking using Guava

preconditions" [28, p. 51] was identified.

76. The examiners noted that the developers and the architects directly involved in the e-

voting system development and maintenance are trained on the development methodology.

However, they did not receive formal role-based training on security in software engineering

(i.e., secure development lifecycle, secure systems engineering, secure coding / defensive

programming training, security testing, etc.).

77. The examiners noted that the members of the teams have unrestricted access to a trusted

third-party security advisor with demonstrated experience in secure systems engineering,

defensive programming and applied cryptography. The third-party is also involved in

architecture, design, and code review operations for critical parts of the system.

78. The examiners noted that a trusted build procedure has been specified and documented.

It allows third parties to reproduce binaries or components, which are identical to those in

operation during a ballot, and thus facilitate the verification of the system. However, the

examiners were unable to assess with confidence that deliverables are adequately certified

and authenticated prior to leaving the build system (i.e., the examiners failed to obtain

assurance that deliverables cannot be tampered after leaving the development

environment).

79. It is expected that the system and its components will be regularly tested for

vulnerabilities and errors by trusted third parties. Testing methods include penetration

testing (also commonly referred to as ethical hacking), which involves hiring experts

specialised in offensive security testing. Additionally, a bug bounty program [29] is in

operation at time of editing this report. It allows individual security testers and researchers

to test the security of the e-voting system in exchange for rewards when vulnerabilities are

found and reported according to well-defined rules.

Examination of the Swiss Internet voting system - Audit scope 2A - v1.0FINAL

SCRT S.A., Morges (Switzerland) – 22.03.2022 39 / 57

80. On a more general perspective, the examiners noted that the Swiss Post e-voting program

did not identify or select a standard or reference model on which to benchmark its own

development process in relation with security and measure its own maturity.

81. The examiners noted that security responsibilities inside the e-voting system software

engineering team are implicitly carried out by the two architects already in charge of the

software architecture and design.

82. In addition to the above, the examiners noted the absence of a formal role of "security

champion", or equivalent, appointed within the e-voting software engineering team.

6.1.2 Software security documentation

83. Swiss Post proposes documented evidence of the security of the e-voting system in:

» Whitepaper - Infrastructure of the Swiss Post voting system [30]
» Software development process of the Swiss Post voting system [24]
» Software development process of the Swiss Post voting system (addition) [25]
» Trusted build of the Swiss Post voting system (no reference available)
» Release management concept for e-voting service [22]
» Swiss Post voting system architecture document [28]
» ICT DEV - Architecture, processes and guidelines (no reference available)
» E-voting configuration management software development tools [23]
» E-voting ISDS Konzept (no reference available)
» E-voting ISDS Risikoportfolio (no reference available)
» E-voting ISDS Risikoanalyse (no reference available)
» E-voting ISDS Risikomanagement (no reference available)

84. An essential part of evaluating the completeness of this requirement (24.1.20) came to

identifying what could qualify as 'security documentation' and which software components

needed to have their security documented. In order to help identify this answer, the

examiners reviewed the computational proof of verifiability and privacy of the e-voting

system [17]. Among other things, the document specifies three primary security goals for the

e-voting system (individual and universal verifiability, and voting secrecy) [17, p. 11] and

documents a threat model.

The examiners also noted the presence of a statement, which they deemed essential to the

context and objectives of this examination:

"We assume that the voting client and voting server are untrustworthy. There is a caveat

regarding voting secrecy: obviously, an adversary controlling the voting client could spy on the

voters’ choices. Therefore, the definition of vote secrecy assumes a trustworthy voting client"

[17, p. 6].

The examiners recognized the motivation behind this statement: for the protocol to offer

voting secrecy just by itself, complete control over the voting server and the voting client

would be necessary, which is both practically unfeasible and outside the scope of the

protocol. Therefore, additional evidence of security may be deemed necessary to increase

Examination of the Swiss Internet voting system - Audit scope 2A - v1.0FINAL

SCRT S.A., Morges (Switzerland) – 22.03.2022 40 / 57

trustworthiness in the components involved in the e-voting system, which are not deemed

trustworthy by the voting protocol. The protocol, therefore, only offers secrecy "where votes

are centrally stored" [17, p. 16] and the burden of trustworthiness of the voting server and

client are transferred to other actors or entities21.

85. The examiners identified that establishing trustworthiness for the voting client required

establishing trustworthiness for components under responsibility of the voter (i.e., the

physical device, the operating system and its applications, the web browser, the network

equipment, etc.) and for components under responsibility of Swiss Post (i.e., the voting server

itself, its web application, its operating environment, and all the artefacts sent from the voting

server to the voting client for rendering into the client's web browser).

The figure below illustrates this separation of responsibilities:

Figure 3 - Trustworthiness of the voting server and client - division of responsibilities

86. Based on the above, the examiners searched for evidence of documentation that offers

both assurance on the security of the voting protocol itself and the security of the software

applications (the "components"). They searched for, in particular:

» Documentation on threats to the e-voting software applications or components,
» Documentation on how these threats were addressed in the e-voting software

applications or components,

21 At this point, the authors deem necessary to emphasize that the Federal Chancellery's ordinance on
electronic voting [6] proposed a conflicting vision on whether only the trustworthy elements of the voting
system should offer voting secrecy (e.g., Art.7) or whether other components should be taken into
consideration for the satisfaction of this requirement (i.e., can voting secrecy be achieved in the eyes of the
Federal Chancellery when the voting server is compromised?). During the examination, the examiners
privileged a conservative approach by adhering to the threat model proposed in the ordinance, which assumes
that "a backdoor introduced into the system" could expose the "secrecy of the vote" [6, p. 26], and therefore
searched for evidence of security documentation on other components that could be "backdoored", too.

Examination of the Swiss Internet voting system - Audit scope 2A - v1.0FINAL

SCRT S.A., Morges (Switzerland) – 22.03.2022 41 / 57

» Documentation on security-relevant design decisions, which had been taken
throughout the course of designing, coding, testing and deploying the e-voting
software applications and components,

» Documentation on security-relevant efforts or controls put in place to increase the
security assurance of the e-voting software applications and components.

87. The examiners found extended evidence of security-relevant information about the Swiss

Post e-voting system spread across a large set of documents:

» The specification of the protocol of the e-voting system, including its threat model and
a computational proof22 and a formal security analysis,

» Guidance on how to implement the protocol based on its specification,
» Documentation on the controls and countermeasures implemented in the operational

data centres and hosting environment,
» Documentation on the software development and maintenance process,
» Documentation on the software release process,
» Documentation on the security tests performed on the software components,
» Documentation on the production of trusted and verifiable builds,
» Documentation on the architecture and infrastructure of the system, including quality

requirements, architecture and design principles, and security requirements,
» A risk register, which lists the threats specified by the Federal Chancellery.

88. In the publicly accessible repository [31], the examiners noted that Swiss Post mentioned

the presence of security-relevant information in two documents: the infrastructure

whitepaper [30] and in the computational proof of the voting protocol [17], as illustrated on

the screenshot below taken from the online documentation portal:

22 The verification of the computational proof of the protocol fell outside the scope of this examination.

Examination of the Swiss Internet voting system - Audit scope 2A - v1.0FINAL

SCRT S.A., Morges (Switzerland) – 22.03.2022 42 / 57

Figure 4 - Security documentation on the e-voting system (13.12.2021)

89. The computational proof of the voting system protocol [17] provides information on the

protocol itself. Although it includes a threat model and a formal security analysis, those

specifically apply to the protocol itself.

90. Swiss Post produced a whitepaper on the operational infrastructure of its e-voting system

[30] and its architecture [28], which answer questions an external auditor could have about

the voting system infrastructure and architecture. The infrastructure whitepaper includes a

section on e-voting security ("e-voting security"), which describes security measures

deployed in the production environment. On the other side, there is no formal security

whitepaper or similar that has been made available, except for the voting protocol.

91. Although information is provided about the security testing tools used to attest the

security of the deliverables, the examiners did not identify details on the testing rules or

profiles chosen by Swiss Post in the documentation.

92. Although the examiners found extended documentation on many aspects of the e-voting

system, they failed to find evidence of the following:

» Which architectural and design principles were set forth as standards during the
design and development of the voting components,

» Which coding principles or rules were set forth as standards during the
implementation of the voting components,

» Which threats or risks were identified in each component, and how the architects or
developers mitigated them,

» How is the security of the components tested,

Examination of the Swiss Internet voting system - Audit scope 2A - v1.0FINAL

SCRT S.A., Morges (Switzerland) – 22.03.2022 43 / 57

» How the development environment, and more particularly its artefacts (e.g., source
code, third party components and build environment), are protected from
unauthorised access.

93. Overall, the examiners noted that Swiss Post extensively documented its processes and

specifications surrounding both the voting protocol and the voting system build and

production infrastructure. They note, however, that many internal documents released to the

examiners included references to a document repository ("wikit[.]post[.]ch"), which was not

accessible during the examination. While some of the gaps were identified during interviews,

the examiners cannot exclude that part of the information that has been considered missing

may in fact exist in those documents.

6.1.3 Quality assurance

94. Swiss Post proposes documented evidence of the security of the e-voting system in:

» Software development process of the Swiss Post voting system [24]
» Software development process of the Swiss Post voting system (addition) [25]
» KWP - Prozessowner-Zirkel - Link continual service improvement (no reference

available)
» KWP - Prozessowner-Zirkel - Link Prozess Improvement Plan register - PIP (no

reference available)

95. The examiners found extended documentation aimed at documenting the voting system

and its processes surrounding the development, maintenance and operation of the system.

The examiners were also shown proofs of testing (i.e., test reports) and the procedures set

forth to carry out various sensitive operations (e.g., development process, release process,

change management process, acceptance, and control quality gates, etc.).

96. The examiners failed to identify evidence of controls or processes to verify the

effectiveness of the security attestation measures put in place to validate the voting system.

In particular, the following evidence could not be verified:

» Evidence of testing or testing procedures on the static attestation tools (e.g.,
SonarQube and Fortify),

» Evidence of testing or testing procedures on dynamic attestation tools (e.g., Burp
Proxy),

» Evidence of testing or testing procedures on community or third-party testing
mechanisms (e.g., penetration tests, bug bounties, etc.).

6.1.4 Configuration management system

97. Swiss Post proposes documented evidence of the e-voting system configuration

management system in:

» Release management concept for e-voting service [22]
» Configuration management software development tools e-voting service [23]

Examination of the Swiss Internet voting system - Audit scope 2A - v1.0FINAL

SCRT S.A., Morges (Switzerland) – 22.03.2022 44 / 57

» E-voting configuration management software application & infrastructure (no
reference available)

98. The examiners noted that the chosen configuration management system is designed to

automatically authorise and trace all changes performed into the e-voting system's

deliverables. Tracing data includes authorship (who made the change), timestamp (when the

change was made), approval (who reviewed and validated the change), and the exhaustive

nature of the change (what was changed).

99. Approval of changes is built on a four-eyes principle implemented in the configuration

management system [25, Para. 8.3]:

» Changes are submitted to the configuration management system in the form of a
request to accept the change (pull request),

» The change acceptation request is reviewed. Only a different individual than the one
who submitted the request can process a change acceptation request.

» The second individual can reject the request or approve it.
» Once approved, the change is permanently entered (committed) into the

configuration management system.

100. The examiners not that the process through which third party components are

selected, vetted, imported and maintained into the configuration management system is

poorly documented.

101. The examiners noted that the process through which changes to the change

management system itself occur is poorly documented (e.g., modification of scripts or

sequences in which build and deploy procedures are defined)23. In particular, whether or not

these changes undergo the same four-eyes verification procedure remained ambiguous.

102. The examiners noted that deliverables produced by the configuration management

system can be explained (i.e., exhaustive source code and components that compose the

deliverable) and compared with other versions of the deliverables, future or previous.

103. The examiners noted that fingerprints are produced from the deliverables, using

cryptographic hash functions. These fingerprints allow operators and systems in the e-voting

production environment to validate the integrity of the deliverables running into production.

This allows to both ensure that the external build process singularly matches the internal one

(trusted build) and to detect whether its content was tampered prior to being deployed into

production. Fingerprinting offers a simpler alternative to digital signatures (integrity vs.

integrity + authenticity) and may be desirable in environments that offer a relatively short

chain of custody between the build systems and the production environment.

23 Deploying the four-eyes principle both upon submission of changes to the input (e.g., new source code, new
components, etc.) but also upon submission of changes to the process itself (e.g., build engine scripts and job
definitions) typically helps mitigating attacks against the build platform.

Examination of the Swiss Internet voting system - Audit scope 2A - v1.0FINAL

SCRT S.A., Morges (Switzerland) – 22.03.2022 45 / 57

104. The reader should note, however, that examining whether these fingerprints are

indeed verified, both during the external build and once the deliverables have reached the

production environment, fell outside the scope of this examination.

6.1.5 Testing

105. Swiss Post proposes documented evidence of the security of the e-voting system in:

» Test concept of the Swiss Post voting system [32]

106. The examiners interpreted “security functions” (req.17.1 from the ordinance [6]) as

the logical mechanisms built into the voting system with the specific intent to mitigate threats

defined in Art. 4 of the OEV [6].

107. While reviewing the test concept, the examiners searched for information on the

following and based on the ordinance's requirements (reqs.17.1, 17.2, 17.3, 25.13.3, 25.13.4.

OEV):

» What are the functions relevant to the security of the system?
» Which components are subject to security testing?
» What tests will be performed?
» How will tests be performed?
» Does the testing approach match the recommended practice? (see: Criteria -

Additional criteria)

108. The test concept describes, among other things, which artefacts are tested, which

types of tests are carried out on the voting system, when and by whom. The concept also

describes the process through which defects are handled, reported, and resolved. Finally, the

concept also specifies the following:

» The test strategy includes 6 testing phases (stages), including tests carried out by
developers (e.g., unit testing, integration testing and automated end-to-end testing),
tests carried out by the testing management division (e.g., system installation tests,
system integration tests, smoke tests, functional tests, regression tests, security tests,
load & performance tests, penetration tests, disaster recovery tests, and accessibility
tests), and acceptance tests carried out by customers (i.e., the Cantons).

» Security testing is mostly performed during stage 3 of the process, which is under
responsibility of the test management division. This confers security testing
independence from the developers.

» Security testing is performed both internally (e.g., pipelined execution of automated
scanning tools) and externally (e.g., penetration tests).

» All identified defects are reported in an issue tracking tool and subjected to weighting,
prioritisation, and reporting.

109. The examiners noted that the test concept lacks information on what qualifies for a

security function in the system (req. 17.1.a). It mentions, however, that the admin portal, the

voting portal, the secure data manager, and the integration tools are subject to security

testing. Although this list creates some ambiguity with the list of components specified in the

reference system architecture [28, Ch. 5.1.2], interviews indicate that security testing is

Examination of the Swiss Internet voting system - Audit scope 2A - v1.0FINAL

SCRT S.A., Morges (Switzerland) – 22.03.2022 46 / 57

performed indiscriminately on all components instead of being strictly limited to their security

functions.

110. The examiners noted that although the test concept refers to "security testing"

multiple times, its definition is left to subjective interpretation. One section refers another

type of testing under the term "business logic security testing", later defined as "tests [that]

serve to ensure the security of the e-voting platform with regard to external access and

manipulation risks" [32]. Overall, the examiners noted that the test plan does not mention

any well-known method of security attestation performed during development, or earlier.

111. A review of the development process [24], [25], and more particularly its security

tooling ("e-voting toolchain") indicates the use of tools typically aimed at delivering security

assurance. These include static analysers (automated source code review) such as SonarQube

[33] and Fortify, and a software composition analyser, Xray [27].

112. The documentation also indicates the use of a dynamic / runtime application testing

tool (Burp Suite [34]). The examiners noted that, while the use of the static analysers was

corroborated in other documents [23, p. 8], [28, p. 18], in shown reports, and during

interviews, no other evidence seemed to corroborate the integration of dynamic testing in

the development process.

113. The examiners also looked at signs of security testing or validation performed at

earlier stages of the development process (before coding). These would typically take the

form of architecture or design reviews [8, Sec. 3.2], [9, Sec. 16], [10, p. 10], [35, Sec. AA1], or

equivalent. Evidence of such controls (threat modelling, design review) was only found in the

voting protocol computational proof [17].

114. The examiners noted that security assurance also heavily relies on outputs produced

by external contributors, such as third-party services suppliers (penetration tests) and the

community (bug bounty program).

6.1.6 Transparency

115. Swiss Post proposes documented evidence of e-voting system's flaw remediation

transparency in:

» E-voting portal [36]
» Test concept of the Swiss Post voting system [32]

116. The examiners interpret “transparent communication” as the quality that makes

known flaws and their associated actions both visible to the public and sufficiently

documented as to avoid unnecessary ambiguity. They also interpret “flaws” as properties of

the system, whose intentional or accidental exercise may jeopardize the security objectives.

Both the terms “flaw” and “vulnerability” are used interchangeably in this document.

117. The examiners noted that when a defect is found during testing, the defect and all

relevant information “is documented as a bug in Jira”. Jira in this context refers to an issue

tracking and project management tool, which is not accessible to the public.

Examination of the Swiss Internet voting system - Audit scope 2A - v1.0FINAL

SCRT S.A., Morges (Switzerland) – 22.03.2022 47 / 57

118. The public is invited to report flaws to Swiss Post using one of three mechanisms:

submitting an issue on the GitLab website[37], filling an online form hosted on the Swiss Post

website[38] or filling a vulnerability report in the voting system’s bug bounty program[29].

119. By design, submissions made through the bug bounty platform or through the online

form remain entirely confidential, until eventually reported or disclosed by Swiss Post. The

provided document does not indicate how or when disclosure to the public may occur.

120. Flaws reported through the GitLab platform [37] are visible by default to the

community, unless the reporter has activated the “confidential” flag. When reporting a critical

or high severity flaw through the GitLab platform, the code of conduct [39] provided by Swiss

Post instructs reporters to activate the “confidential” flag.

121. According to GitLab’s online documentation [40], the “confidential” flag makes an

issue private by restricting it from public access. GitLab’s confidentiality feature is

implemented as a binary switch that either makes all issue details accessible to the

community or makes it completely invisible and restricted to the project’s members. Unless

Swiss Post internally acknowledges the removal of the “confidential” flag, the public has no

way of knowing if and when a critical issue has been reported through the GitLab issue

reporting form24.

122. The examiners noted that the Cantons have access to reports marked with the

"confidential" flag, which allows them to conduct their own risk assessment following a

report.

123. The examiners noted that maintaining secrecy over the details of a highly severe or

critical flaw can be easily motivated by the general need to protect the voting system from

attacks or fraud, and more particularly during ballots. Still, the chosen implementation not

only hides the details of "confidential" flaws to the public, but also hides their mere existence

entirely.

124. Swiss Post adopted a severity scale comprised of four (4) levels: critical, high, medium

and low[41]. Critical severity findings include vulnerabilities or flaws whose exploitation

“could compromise the application, the system or the voting process severely” and is

“straightforward to set up”, whereas high severity findings include those whose exploitation

“could compromise the application, the system or the voting process” and is “hard to set up”.

125. Although the security scale offers sufficient granularity, the examiners claim that an

ambiguity arises from whether Swiss Post and the reporter will evaluate the finding based on

identical perceptions of what constitutes a “compromise of the system” or “a severe

24 GitLab’s issue numbering scheme is based on a sequential integer (1, 2, ..., n). Assuming that only issues of
the highest severity will be flagged as confidential, a motivated public auditor could monitor the list of issues
for the presence of missing “IDs” or create a new issue and observe its assigned identifier to infer on the
existence of a hidden “high severity” issue.

Examination of the Swiss Internet voting system - Audit scope 2A - v1.0FINAL

SCRT S.A., Morges (Switzerland) – 22.03.2022 48 / 57

compromise of the system.” This ambiguity could affect whether some flaws will be reported

as high or critical, and consequently remain invisible to the public.

126. The examiners reviewed a sample25 of the issues published on GitLab [37] that were

marked as closed at the time of examination. All the issues reviewed had their associated

actions documented and were submitted for approval to the issue reporter.

127. The process through which flaws, that were submitted through the online form or the

bug bounty program, get copied into the public repository [6] remains manual. The process

through which confidential flaws submitted through the GitLab platform are turned visible to

the community also remains manual.

128. In the examines' opinion, the transparency objective is achieved. However, should the

Federal Chancellery seek absolute transparency towards the public, limited assurance is

provided to the public auditor. The multiplicity and design of the three vulnerability disclosure

channels still allow Swiss Post and Cantons to retain complete control over when and how

flaws become known to the public and how their severity gets ranked.

6.1.7 Systematic correction of flaws

129. Swiss Post proposes documented evidence of the systematic correction of flaws in the

e-voting system in:

» E-voting change management (reference not available)
» Issue management - competence centre e-voting (reference not available)
» Test concept of the Swiss Post voting system [32]
» Release management concept for e-voting service [22]
» E-voting QCV cheat sheet (reference not available)

130. For additional information, refer to "Appendix: Observations - Transparency".

6.2 Audit scope criteria

Figure 5 - Audit scope 2a OEV requirements (source: Audit concept [5])

25 Population: 14 issues, sample size: 7 (50%), selection method: odd issue identifiers.

Examination of the Swiss Internet voting system - Audit scope 2A - v1.0FINAL

SCRT S.A., Morges (Switzerland) – 22.03.2022 49 / 57

6.3 Interview sessions log

Date Objective Participants

19.07.2021 Kick-off - Project team (Swiss Post)

- All scope 2 examinators

19.08.2021 General scope 2 information
session (project organisation,
standards and processes, systems
architecture)

- Project team (Swiss Post)

- All scope 2 examinators

03.09.2021 General scope 2 information
session (evidence requirements
and interview planning)

- Project team (Swiss Post)

- All scope 2 examinators

19.11.2021 Scope 2a interview: development
process and lifecycle

- Project manager + product owner + developer
+ SCRUM master (Swiss Post)

- Scope 2a examinator

23.11.2021 Scope 2a interview: developer
cross-examination

- Project manager + product owner + 2 backend
developers + 1 frontend developer + SCRUM
master (Swiss Post)

- Scope 2a examinator

29.11.2021 Scope 2a interview: testing - Project manager + product owner + developer
+ SCRUM master (Swiss Post)

- Scope 2a examinator

01.12.2021 Scope 2a interview: quality
assurance

- Project manager + product owner + developer
+ SCRUM master (Swiss Post)

- Scope 2a examinator

Table 10 - Interview sessions log

6.4 Development process

The table below proposes a summarised description of the steps composing the e-voting

development process [24], [25], [42]:

Action
nr. Description

1 Input change request

2 Review and assess change request

3 Takeover by software development

4 Transfer into backlog (story / feature / task input)

5 Formulate release vision (if not hotfix)

6 Formulate release roadmap (if not hotfix)

7 Update feature(s) / task(s)

8 Select task(s)

Examination of the Swiss Internet voting system - Audit scope 2A - v1.0FINAL

SCRT S.A., Morges (Switzerland) – 22.03.2022 50 / 57

9 Assign task(s)

10 Reset code

11 Change task status

12 Create feature / hotfix / bugfix

13 Create branch in the e-voting repository

14 Checkout new branch

15 Develop feature

16 Run local build

17 Run local end2end tests

18 Document change request and/or changes made

19 Manage code change:
- Rebase / merge,
- Manage conflicts (optional),
- Squash (optional),
- Commit,
- Push

20 Run unattended build and deployment test:
- Build artifacts
- Assess artifacts (composition analysis, quality and security static analysis)
- Generate artifacts integrity hashes
- Anonymize source code authorship
- Deploy into containers

21 Test builds

22 Release builds

23 Transfer to software operations repository

24 Takeover by software operations department

Table 11 - Summary of Swiss Post e-voting development process steps

Examination of the Swiss Internet voting system - Audit scope 2A - v1.0FINAL

SCRT S.A., Morges (Switzerland) – 22.03.2022 51 / 57

6.5 Reference evidence documents

Below, the inventory of evidence documents proposed by Swiss Post in the context of the

examination of scope 2A (development processes), based on requirements set forth in the

Federal Chancellery e-voting audit concept [5].

Topic: development process

Topic: Software security documentation

Examination of the Swiss Internet voting system - Audit scope 2A - v1.0FINAL

SCRT S.A., Morges (Switzerland) – 22.03.2022 52 / 57

Topic: testing

Topic: quality assurance

Examination of the Swiss Internet voting system - Audit scope 2A - v1.0FINAL

SCRT S.A., Morges (Switzerland) – 22.03.2022 53 / 57

Topic: configuration management system

Topic: testing

Examination of the Swiss Internet voting system - Audit scope 2A - v1.0FINAL

SCRT S.A., Morges (Switzerland) – 22.03.2022 54 / 57

Topic: transparency

Topic: systematic correction of flaws

6.6 Request for additional information on risk management

Examination of the Swiss Internet voting system - Audit scope 2A - v1.0FINAL

SCRT S.A., Morges (Switzerland) – 22.03.2022 55 / 57

6.7 Interview plan - development process (additional

criteria) + developers

Stage 0: introduction

» Inform developers of the objective of the interview.
» Inform developers that the interview will remain anonymous, only the date and

observations collected during the session will be publicly reported.
» Confirm with developers that they are informed of the context of the examination and

that their answers may be publicly disclosed.

Stage 1: role and responsibilities

» Q: What is your role and position in the e-voting project?
» Q: What specific components/projects do you work on?
» Q: Can other developers in your team work on the same code as you do?
» Q: Can you take a 4-weeks long leave of absence (e.g., accident, parental/maternity

leave, etc.) without detrimental impact to the team or the project?

Stage 2: control question

» Q: How do you ensure that your deliverables do not contain vulnerabilities or errors?

Stage 3: threat awareness

» Q: What threat are you dealing with, as a developer of the voting system?
» Q: How do you respond to / manage these threats?

Stage 4: format security training

» Q: What forms of training did you receive in relation with secure development?
» Q: What topics / syllabus did you cover during this/these training(s)?

Examination of the Swiss Internet voting system - Audit scope 2A - v1.0FINAL

SCRT S.A., Morges (Switzerland) – 22.03.2022 56 / 57

Stage 5: tooling

» Q: What tools are at your disposal to help you write you better/more secure code?
» Q: Do you have access to security experts or specialists that can help you on software

engineering security? How/who?
» Q: Are you given access to an enterprise level security API or library?

Stage 6: dev workstation

» Q: From what locations can you work and submit source code? (e.g., office, home,
etc.)

» Q: Can you work on the code from an unmanaged device? (e.g., private computer)
» Q: How do you log into the source code repository?
» Q: Are there particular rules you must comply with when working remotely?

Stage 7: process

» Q: What sort of security-related information do you receive when processing a work
item?

» Q: Are there rules or standards you must adhere to?
» Q: Are there security constraints enforced onto your development tools (e.g., banned

functions, commit locks, local static scanning, etc.)?
» Q: Do you attend threat modelling sessions or equivalent?
» Q: How do you reduce the risk of writing vulnerable code?
» Q: Can you introduce third-party libraries or components in your code? If yes, how?
» Q: What do you verify/validate when committing code or reviewing someone else's?
» Q: How is your code tested for vulnerabilities / errors?
» Q: Is your code reviewed or tested by security-focused people or tools?

6.8 Interview plan - testing and quality requirements

» Q: How are security relevant functions identified and where?
» Q: Which tests are always performed?
» Q: Which tests are sometimes performed?
» Q: How are abuse cases / attacker stories implemented?
» Q: How are tests specified?
» Q: What are the expected results of these tests? Are they specified?
» Q: What is the current testing coverage? How is it measured?
» Q: What is tested precisely?
» Q: What tools do you use for testing?
» Q: What customizations were made in the testing tools?
» Q: How are new design proposals tested for vulnerabilities or errors?
» Q: How is the source code tested for vulnerabilities or errors?
» Q: How are deliverables tested for vulnerabilities or errors?
» Q: Who performs security tests?
» Q: How is the final platform security tested?
» Q: What happens when a defect is identified?
» Q: What determines if a defect is a security defect?
» Q: How are security tests reported?

Examination of the Swiss Internet voting system - Audit scope 2A - v1.0FINAL

SCRT S.A., Morges (Switzerland) – 22.03.2022 57 / 57

» Q: Who approves these reports?
» Q: Is there anything you wish you were testing but are not yet testing?

6.9 Interview plan - quality assurance requirements

» Q: How do you review and improve your development process?
» Q: Which third-party standards or references do you rely on to define your

development process?
» Q: How do you verify that your security testing tools work as expected?

