
Berner Fachhochschule (BFH), CH-2501 Biel, Switzerland

Examination of the Swiss Post Internet
Voting System

Scope 2: Software

Rolf Haenni, Reto E. Koenig, Philipp Locher, Eric Dubuis

March 28, 2022

On behalf of the Federal Chancellery

1

Revision History

Revision Date Description
0.1 14.08.2021 Document initialization.
0.2 28.11.2021 Draft submitted to Federal Chancellery.
1.0 28.03.2022 Final version submitted to Federal Chancellery. Some clarifi-

cations added after receiving feedback from the Federal Chan-
cellery and from Swiss Post. Minor textual improvements.

2

Contents
Management Summary 4

1 Introduction 6
1.1 Relevant Documents . 6
1.2 Source Code . 8
1.3 Purpose and Scope of Examination . 9
1.4 Summary of Findings . 10

2 Topics of Examination 13
2.1 Deviations Between Protocol and System Specification 13
2.2 Deviations Between System Specification and Source Code 18
2.3 Crypto-Primitives . 22
2.4 Underspecified Concepts and System Components 24
2.5 Quality of Code . 26
2.6 Synchronization . 29
2.7 Randomness . 30

3

Management Summary

This report is the main output from our analysis of the current implementation of the
Swiss Post e-voting system. Compared to the documents and code released in 2019,
we observed numerous improvements in many places. We can also confirm that the
development team at Swiss Post makes a great effort in aligning the source code with
the cryptographic protocol. There are areas in which this alignment has reached a
satisfactory degree, but there are also areas, in which unfortunately this is not yet the
case. Overall, this gives the impression that we have been given an unfinished project to
look at, which generally points into the right direction, but which has not yet reached
the state that one would expect when doing such an assessment. One obvious reason
for this unfortunate situation is the underlying cryptographic protocol, which itself still
seems to be relatively unstable at this moment. The fact that several software updates
have been released during our assessment underlines our impression of looking at work
in progress.

In the light of the above remarks, we can neither confirm nor decline that the software
will at some point fulfill the legal requirements of the draft OEV. While we are incapable
of making a final verdict at this stage of the approval process, we expect that the output
of our analysis will serve useful for the system developers at Swiss Post to further improve
the quality of their product. Together with the improvements suggested by other experts,
this may represent an important step forward towards a system that at some point will
fulfill the legal requirements and pass the approval process, even if this process will need
more time than expected.

A very positive aspect of our assessment comes from the fact that the software is now
owned and developed as an internal project at Swiss Post. Contacting the right person
for getting a quick answer to a specific question has always been very efficient and un-
complicated. All members of the Swiss Post development team showed their eagerness
to help and learn from our questions and feedback. This demonstrates that Swiss Post
has made great progress in implementing their new strategy of being as open and trans-
parent as possible. This creates an entirely new working atmosphere, from which both
the people from Swiss Post and the external auditors greatly benefit.

On the more technical side, we did not discover evident programming errors that could
directly be exploited by an adversary for conducting an attack on either the integrity
or privacy of the votes. However, we found several problematical areas, in which the
current implementation starts from questionable assumptions. One such area is the
synchronization of ballots in situations where multiple ballots are submitted in parallel
by the same voter. Here the implementation is based on the assumption that such
situations will never occur in practice. Another example is the delegation of setting up
a reliable randomness source to the operating system of the machines that will execute
the software. Here it is assumed that the administrator of these machines will always be
able to guarantee the reliability of the machine’s randomness source. Since failures may

4

have devastating consequences for the overall security in both examples, we believe that
the underlying assumptions are unacceptably strong.

5

1 Introduction

This report lists the findings of our assessment of the Swiss Post e-voting system imple-
mentation. We have conducted this assessment in parallel to analyzing the underlying
cryptographic protocol. Both tasks—called Scope 1 and Scope 2—have been assigned to
us by the Federal Chancellery in June 2021 for a period of 6 months. While it is evident
that the cryptographic protocol and the system implementation are closely interlinked,
we tried to separate the two scopes in our work as much as possible. This means that
in this report we do not discuss findings that exist in both scopes, if they have already
been discussed in the other report. By doing so, the two resulting reports are largely
independent, but we still recommend looking at them as two complementary documents
about the same topic.

A draft of this document has been given to the Federal Chancellery on November 28,
2021. The feedback that we received from the Federal Chancellery in January 2022 and
from Swiss Post in March 2022 allowed us to finalize the document by inserting a few
clarifying remarks in various places. The content of this document has been worked out
jointly by the listed authors from the Bern University of Sciences and independently of
any other group of people. During our mission, we have been in loose contact with the
Swiss Post, mainly for obtaining clarifying information on certain topics. All contacted
members of the Swiss Post development team showed their eagerness to answer our
questions efficiently and to learn from our preliminary feedback.

There were also two general meetings with all involved experts, a General Overview
Meeting on August 19 and an Audit Planning Meeting on September 3. All the docu-
ments related to these meetings (slides, meeting notes, etc) were given to us in a timely
manner.

1.1 Relevant Documents

To conduct our assessment, we received two relevant documents from the Federal Chan-
cellery, the legal ordinance with its annex and an explanatory report with additional
clarifying information:

• [DraftOEV] Federal Chancellery Ordinance on Electronic Voting, Federal Chan-
cellery FCh, Draft of April 28, 2021 (with Annex on Technical and Administrative
Requirements for Electronic Voting).

• [ExpRep] Partial Revision of the Ordinance on Political Rights and Total Revision
of the Federal Chancellery Ordinance on Electronic Voting (Redesign of Trials) –
Explanatory Report for Consultation, Federal Chancellery FCh, April 28, 2021.

During the writing of this report, [DraftOEV] went through a public consultation process.
According to a press release on December 10, 2021, the Federal Council has decided to

6

finalize and publish the new ordinance in mid-2022. Given the large amount of responses
to the consultation, final documents are likely to contain some changes.

To emphasize its state as a non-final document, we refer to it as “draft OEV” (as opposed
to “current OEV”, which we will sometimes use to refer to the current ordinance from
2018). For understanding the requirements defined in [DraftOEV] and [ExpRep] as
precisely as possible, we have mainly looked at the official document versions in German.
However, the terminology and citations used in this document are all taken from the
available English translations.

Swiss Post has released many documents describing various aspects of their system and
its development process. Some of them were of minor importance for conducting our
assessment. The most relevant documents were the following:

• [ProtSpec] Protocol of the Swiss Post Voting System – Computational Proof of
Complete Verifiability and Privacy, Version 0.9.10, Swiss Post Ltd., June 25, 2021.

• [SysSpec] Swiss Post Voting System – System Specification, Version 0.9.6, Swiss
Post Ltd., June 25, 2021.

• [CryptoPrim] Cryptographic Primitives of the Swiss Post Voting System – Pseudo-
Code Specification, Version 0.9.6, Swiss Post Ltd., July 26, 2021.

• [ArchDoc] SwissPost Voting System – Architecture Document, Version 0.9.1, Swiss
Post Ltd., August 17, 2021.

• [VerifSpec] Swiss Post Voting System – Verifier Specification, Version 0.9, Swiss
Post Ltd., September 1, 2021.

• [DevProc] Software Development Process for the Swiss Post Voting System, Swiss
Post Ltd., November 15, 2021.

These documents are all publicly available, either at the Swiss Post E-Voting Commu-
nity Programme web page or in corresponding sub-directories of two interlinked GitLab
repositories at

• https://evoting-community.post.ch/en/community-programme,
• https://gitlab.com/swisspost-evoting/e-voting/e-voting-documentation,
• https://gitlab.com/swisspost-evoting/verifier/verifier.

The first three documents in the above list have been updated during the assessment
period. Due to the given time constraints and strict deadlines and after having invested
a significant amount of work into the versions that were given to us in the beginning of
our mission, we decided not to consider the updates in our analysis. As the other three
documents were only released during the assessment period, we considered them on a
best effort basis with the restricted time left at the end of our mission. Generally, we
would have expected to receive finalized versions of all documents at the beginning of
the mission.

7

https://evoting-community.post.ch/en/community-programme
https://gitlab.com/swisspost-evoting/e-voting/e-voting-documentation
https://gitlab.com/swisspost-evoting/verifier/verifier

1.2 Source Code

We received Version 0.9.0.0 of the source code on June 29 in a GitLab repository “UP
2021/Audit Scope 2” created especially for the purpose of conducting the audits in
Scope 2. Three updates 0.9.1.0, 0.9.2.0, and 0.10.0.0 were uploaded during the month
of July. Version 0.10.0.0 was for a long time the version that we looked at to conduct
our analysis. No further versions have been uploaded to this repository.

In August 2021, Swiss Post started to release the source code in the same public GitLab
group in which the documentations have been released in July:

• https://gitlab.com/swisspost-evoting/e-voting/e-voting,
• https://gitlab.com/swisspost-evoting/e-voting/evoting-e2e-dev,
• https://gitlab.com/swisspost-evoting/crypto-primitives,
• https://gitlab.com/swisspost-evoting/verifier/verifier.

During the main period of our mission from July to November 2021, the initial public
Version 0.11.3.0 from August 31 has been updated four times into Version 0.11.4.0 on
October 7, into Version 0.12.0.0 on November 9, into Version 0.12.0.1 on November 15,
and into Version 0.12.0.2 on November 17. Obtaining regular code updates during our
mission was increasingly challenging, because it meant to reexamine areas of the code
that we already analyzed. After submitting our draft report to the Federal Chancellery
on November 28, further updates have been uploaded to the repository. Version 0.13.0.0
and its successor Version 0.13.0.1 from February 23, 2022, contain several major improve-
ments made in response to the evaluation reports submitted to the Federal Chancellery,
including this one.

On September 28, 2021, to ensure the consistency of the ongoing examinations with
one another, the Federal Chancellery instructed all involved experts to use the code
that was available by then. Corresponding version numbers, release dates, and SHA-1
commit fingerprints are listed in the following Table 1. We decided to strictly follow
the instructions received from the Federal Chancellery. All the statements made in this
report are therefore tied to the versions of the following table.

Code Library Version Date Commit (SHA-1 Fingerprint)

E-voting 0.11.3.0 August 31 f4b8c2f45970678650115b2e8bf3aeb924ddb05a

Crypto-primitives 0.11.3.0 August 31 b97c82394135edac9b53368cf35f0613fb8071ea

evoting-e2e-dev 0.11.3.0 August 31 e0a7c8da5b7601c6eeb512efe8c8a644021a2920

Verifier 0.9.0.0 September 2 56de7c47cd3daad42bf6bf7a214b99838f1ad864

Table 1: Library versions as examined in this report.

To whole system code base is a huge collection of files. The core library E-voting, for
example, consists of 2’458 Java and 326 JavaScript files with a total of nearly 175’000

8

https://gitlab.com/swisspost-evoting/e-voting/e-voting
https://gitlab.com/swisspost-evoting/e-voting/evoting-e2e-dev
https://gitlab.com/swisspost-evoting/crypto-primitives
https://gitlab.com/swisspost-evoting/verifier/verifier

actual code lines. Table 2 gives an overview of the code libraries in terms of number of
files and number of lines (code, comments, blanks).

Code Library Language Files Lines Code Comments Blanks

E-voting
Java 2458 220947 142236 37064 41647
JavaScript 326 47541 32569 6892 8080

Crypto-primitives Java 176 28177 18273 5550 4354
evoting-e2e-dev Java 83 7632 4631 1576 1425
Verifier Java 267 23210 15035 4810 3365

Total: 2458 220947 142236 37064 41647

Table 2: Number of files and code lines in the given libraries.

The files from the core library E-voting are assigned to a total of 55 different Maven
projects. We were able to install and build them in our IDE without considerable
difficulties. During the building process, dependencies to external libraries were resolved
automatically. The possibility of examining the code in our IDE without any broken
dependencies was important for conducting our analysis efficiently. Compared to the
2019 code release, this is an important step forward for making the code more accessible
to anyone interested in analyzing the code.

1.3 Purpose and Scope of Examination

In a document called “Audit Concept v1.3”, the Federal Chancellery describes the rules
for preparing, conducting and reporting the examination. This document has been
given to both the examiners and the examinees. It defines the general purpose of the
examination as follows:

“In the context of the assessment of the Swiss Post system, the experts shall
answer the following questions:

• Are the system, its development and operation compliant with the legal
requirements [. . .]?

• Are the measures taken to mitigate risks effective?
• Which improvements could be made for the sake of security, trust and

acceptance?”

The same document also defines the specific goals and examination criteria for Scope 2:

“The software of the system including the auditor’s technical aid must fulfill
the requirements listed in Chapters 2 to 25 of the annex of the draft OEV and
adequately support the protocol [. . .]. The mapping between a requirement in
those paragraphs and the place [. . .] where it is fulfilled shall be provided by

9

the examinees before the examination. Functions whose trustworthiness is
decisive for the effectiveness of verifiability as per draft OEV, must be exam-
ined in detail on the basis of the source code and the cryptographic protocol.

Moreover, a sample of the functional tests documented and executed by the
developer are to be executed by the examiners to validate their results. The
sample shall be selected by the examiners on the basis of its coverage of se-
curity functions and the contribution of these functions to risk mitigation.”

To structure the expected work of the examiners and the focus of the assessment in
Scope 2, the document describing the audit concept also provides a list of six different
topics numbered from a) to f) and links them to the given requirements as defined in
[DraftOEV, Annex]. Figure 1 is taken for there

Figure 1: Examination topics of Scope 2 as defined in “Audit Concept v1.3”.

Within the given time constraints, it was impossible to conduct our examination on
all the topics listed in Figure 1, also because some of the topics lie outside our area
of expertise. Therefore, we decided to focus our examination on the Topics b), d),
and e), i.e., on assessing the code quality and security, the alignment between protocol,
specification, design and source code, and the implementation of the protocol. These
are our principal areas of expertise within this examination scope.

1.4 Summary of Findings

The general impression that we received from analyzing the system implementation is
the one of looking at an unfinished project. Certain parts of the documentation and code

10

have been improved considerably compared to earlier versions, in such a way that we
would be able to announce a positive verdict if the whole system had reached that same
quality level, but this is unfortunately not yet the case. An example that underlines this
point is the existence of two cryptographic libraries, an “old one” called cryptolib and a
revised “new one” called crypto-primitives. Both libraries are currently in use, sometimes
simultaneously by the same algorithm, but it is evident that the old library is a relic
from an earlier version and is supposed to disappear when all its functionalities have been
shifted to the new one. Another observation emphasizing the project’s work-in-progress
status is its dependency to outdated external libraries, of which some will even reach
the end-of-life status soon, meaning that no further patches or updates will be released.
The removal of such libraries has been announced in the project repository’s readme.md
file, which also lists some other “known issues” and provides a link to an open issue on
the repository’s issue tracker. The existence of multiple known issues is something that
one would not expect to see in an almost finished project that undergoes an examination
process.

Another major problem of the current implementation is the incomplete alignment be-
tween the protocol and system specifications and between the system specification and
the source code. Checking these alignments is where we invested most of our efforts dur-
ing the examination process. Again, there are revised areas in which the alignment has
achieved a satisfactory level, but there are also (seemingly unrevised) areas, where this is
not the case. We can therefore confirm that the general development process points into
the right direction, but also that the current version is still far from reaching the stage
of finalization. Detailed results of examining the alignments are listed in Sections 2.1
and 2.2.

Similar remarks are possible with respect to the overall code quality. From the perspec-
tive of a cryptographic audit, the most significant criteria are the code’s readability and
comprehensibility, which we see as an important precondition for checking the correct-
ness of the implemented cryptographic protocol. We expected that seemingly simple
tasks such as locating the code that implements a given aspect of the protocol should
not cause too much difficulties. For some of the given pseudo-code algorithms, locating
corresponding Java (or JavaScript) methods was indeed relatively simple, for example
by searching through the entire project code base for corresponding keywords. In other
cases, however, this search was very difficult to conduct, mostly due to confusing class
or method names that are not present in the pseudo-code. Here again, it seems that
certain parts of the code have been cleaned up carefully, for example by adopting some
naming conventions, while other parts of the code have not yet been revised. Additional
readability problems are caused by certain dependencies to third-party libraries, which
can be useful for implementing repeating coding patterns efficiently and robustly, but
which also introduce additional layers of complexity and obscure the overall program
flow. For optimized readability, we would recommend to implement the protocol algo-
rithms without the help of such libraries. In Section 2.5, this point will be discussed
further and exemplary problems from the code will be given.

11

From a security perspective, a major concern with the current implementation is the
missing synchronization of ballots in situations where multiple ballots are submitted
in parallel by the same voter. Here the implementation is based on the assumption
that such situations will never occur in practice. While this assumption may hold for
ordinary voters using nothing but the provided web interface of the official election
portal, it is certainly not true in general, i.e., in the presence of active adversaries who
are trying to provoke such situations on purpose. Synchronization problems of that
kind are well known in general web applications, and methods to prevent them are
not difficult to implement. Without proper synchronization, the involved parties may
run into inconsistent states, which then may prevent the voting process from working
properly. Or even worse, if an attacker receives responses from sending multiple ballots,
this can undermine the verification properties of the underlying cryptographic protocol.
We will further discuss this topic in Section 2.6.

We are also concerned about the generation of high-quality randomness, which is a
security-critical topic in every cryptographic application. Currently, the implementa-
tion takes the simplest route by creating instances of the Java class SecureRandom or in
JavaScript by calling the function getRandomValues from the Web Crypto API. These
are the standard cryptographic pseudo-random generators in the respective environ-
ments, so there is nothing wrong about using them. However, the problem in the case
of Java SecureRandom is the fact that its seeding depends on the current configuration
of the operating system on which the JRE is running. To presume that a high-entropy
seed can always be obtained in this way is a very strong trust assumption, which we do
not support. The problem with using the Web Crypto API in JavaScript comes from the
fact that in scripting languages, functionalities can easily be overridden, for example by
injecting a few code lines as part of another external library. Relatively simple privacy
attacks are therefore possible on the voting client. We provide a more detailed discussion
of this problem in Section 2.7.

12

2 Topics of Examination

2.1 Deviations Between Protocol and System Specification

One of the first questions that we addressed in our analysis is the alignment between
the two most relevant documents, the protocol specification [ProtSpec] and the system
specification [SysSpec]. To answer this question, we scanned the two documents for
differences, most importantly with respect to the message flow in the protocol and the
computations performed by the involved parties. For this, we took the high-level de-
scription of the protocol algorithms from [ProtSpec] as a reference point for checking
their alignment with corresponding pseudo-code algorithms from [SysSpec]. This work
turned out to be very time-consuming, because it meant to align in each case all the
involved variables and corresponding computations. Since there are already quite a few
differences in the formal notation, for example by using different mathematical symbols
or slightly different variable names for the same objects or quantities, this work was
anything but obvious. Another complicating issue came from the fact that the compu-
tational steps of an algorithm are often not presented in exactly the same order, which
sometimes created a considerable overhead for re-ordering them manually.

We believe that these general problems of describing the algorithms consistently in both
documents are mostly unnecessary. For the security of the system, this is nothing criti-
cal, but since it complicates the evaluation process, we recommend to improve it further
in future versions of the documents. We also suggest to question the necessity of hav-
ing descriptions of the same algorithms in two different documents, which clearly is
highly redundant. With a single description, many of the problems could be avoided
entirely without really losing something. This whole section of our report would become
obsolete.

2.1.1 General Deviations

We first scanned the system specification and the architecture documents for deviations
with respect to the general structure of the cryptographic protocol and the messages
exchanged between the parties. In most places, the correspondence is very high, but we
also found some important differences.

One issue is related to the OK/NOT-OK message from the auditors to the CCMs in
[ProtSpec, Fig. 23]. In our protocol analysis in Scope 1, we already expressed our con-
cern about involving the auditors at the end of the voting phase, as it was unclear to us
how this particular message could possibly be implemented. From a private communi-
cation with Swiss Post, we learned that in the actual implementation VerifyVotingPhase
is executed together with VerifyOnlineTally at the end of the online mixing process in
[ProtSpec, Fig. 24], and that the two OK/NOT-OK messages are sent jointly to the elec-
toral board (not the CCMs). Independently of whether this modification in the protocol

13

flow creates any security problem, it is clearly a deviation between the protocol and its
implementation.

Other deviations in the message flow exist in the Deployment Overview from [ArchDoc,
Fig. 1], where the verifier (the software used by the auditors) receives all the information
directly from CCM4, whereas in [ProtSpec, Figs. 19, 23, 24] information is also received
from the print office, the voting server, and the other CCMs. Furthermore, according to
[ProtSpec, Fig. 24], there is an information flow from the auditors to the CCMs, but no
such communication is depicted [ArchDoc, Fig. 1]. The Deployment Overview diagram
is therefore clearly not aligned with the cryptographic protocol. Similar deviations exist
between [ProtSpec, Fig. 24] and [ArchDoc, Fig. 24], which both depict the tally phase.
Generally, we think that the dcoument quality of [ArchDoc] should be improved.

A more subtle deviation from the protocol specification results from a seemingly inno-
cent statement in [SysSpec, Sect. Sect. 6.1], which permits the repetition of the mixing
process if either VerifyVotingPhase or VerifyOnlineTally detect a failure. Unless explicitly
permitted in the protocol specification, repeating certain protocol steps is highly prob-
lematical, because it may render existing security proofs invalid. For example, it could
happen that an adversary provokes the repetition of these steps on purpose, with the
goal of breaking the protocol’s security properties.

A very general deviation, that appears in many places, comes from the fact that the
possibility of write-in votes has not been taken into account in the protocol specifica-
tion, whereas the system specification supports the general case of l ´ 1 write-ins with
the aid of multi-recipient ElGamal encryptions of size l. This affects the key generation,
encryption, decryption and proof generation algorithms, which are therefore not aligned
with the protocol specification. In our Scope 1 report, we have already discussed prob-
lems related to write-ins and recommended removing them entirely from the protocol.
But then they should also be removed from the current implementation.

2.1.2 Deviations Between Algorithms

In the introduction of this section, we already mentioned some of the difficulties that we
encountered when comparing the algorithms as described in [ProtSpec] and [SysSpec].
Other unnecessary complications resulted from the fact that algorithms are not num-
bered and vectors are not indexed consistently across both documents. In the sum-
marizing tables given below, we use the algorithm numbers from [SysSpec] and ignore
any indexing differences. As one can see from our results, we discovered quite a lot
of deviations—minor and major ones—in almost all algorithms. The requirement from
[DraftOEV, Annex 25.2.8], namely that “The cryptographic protocol, specification, de-
sign and source code are aligned”, is therefore certainly not yet fulfilled to a satisfactory
degree.

14

Configuration Phase

4.1 GenKeysCCRj ˆ Protocol defines k1j P Z˚q , not k1j P Zq.
4.2 GenVerCardSetKeys X Sufficient alignment reached.

4.3 GenSetupEncryptionKeys X
Inconsistent use of symbols n and ω. Otherwise, suf-
ficient alignment reached.

4.4 GenVerDat ˆ

Inconsistent naming of variables hpccHashid and
lpCCid,k, hckid and hCKid, BCK and bck, and vcdid
and vcid. Compression of public keys undefined in
protocol. Protocol defines LpCC to be shuffled, not not
be ordered alphabetically (shuffling instead of order-
ing is an important subtlety in the security proof).

4.5 GenEncLongCodeSharesj ˆ
iaux is undefined in protocol. Inconsistent naming of
variables kcj,id and kj,id.

4.6 CombineEncLongCodeShares X Sufficient alignment reached.

4.7 GenCMTable ˆ

Usage of key derivation function MGF1 is undefined
in protocol. Inconsistent naming of variables vcdid
and vcid. Compression of secret keys undefined in
protocol. The protocol defines the CMtable to be
shuffled, not be ordered alphabetically (shuffling in-
stead of ordering is an important subtlety in the se-
curity proof).

4.8 GenCredDat ˆ

Usage of key derivation function MGF1 is undefined
in protocol. Inconsistent naming of variables SVK and
svk.

4.9 SetupTallyCCMj X
Parameter µ undefined in protocol. Otherwise, suffi-
cient alignment reached.

4.10 SetupTallyEB ˆ
Parameter δ, generation of secret key shares, and
compressing of public keys undefined in protocol.

Voting Phase

5.1 GetKey ˆ
Usage of key derivation function MGF1 is undefined
in protocol.

5.2 CreateVote X

Inconsistent use of symbols between pγ1, φ1,0q and
pc1,0, c1,1q and between pγ2, φ2,0, . . . , φ2,ψ´1q and
pc2,0, . . . , c2,ψq. Otherwise, sufficient alignment
reached.

5.3 VerifyBallotCCRj ˆ

List of already accepted valid votes LvalidVotes,j with
membership tests not implemented. Equality test
ψ “ ψ˚ not implemented.

15

5.4 PartialDecryptPCCj ˆ

List of already accepted valid votes LvalidVotes,j with
membership tests not implemented. Equality test
ψ “ ψ˚ not implemented. Specification of iaux as a
nested list unclear. Inconsistent naming of variables
LpartDec,j and LdecPCC,j .

5.5 DecryptPCCj ˆ

LvalidVotes,j , LdecPCC,j and LpartPCC,j with member-
ship tests not implemented. Missing input values
φ2,0, . . . , φ2,ψ´1 in Line 2. Invalid range r0, ψ ´ 1q in
Line 14. Specification of iaux as a nested list unclear.

5.6 CreateLCCSharej ˆ

Ensure LconfirmedVotes,jtvcidu “ 0 requires
LconfirmedVotes,j to be initialized, but initializa-
tion is missing. Protocol defines LdecPCC,j , LsentVotes,j ,
Lconfirmed,j to contain ballots bid, not voting card
identifiers vcid. Output Kj,id not specified in
protocol.

5.7 ExtractCRC ˆ
Usage of key derivation function MGF1 is undefined
in protocol. Updating of LsentVotes,j and bb is missing.

5.8 CreateConfirmMessage X Sufficient alignment reached.

5.9 CreateLVCCSharej X

Variable maxConfAttempts replaced by constant
value 5. Inconsistent naming of variables hcmid and
hCKid. Output Kcj,id not specified in protocol. Oth-
erwise, sufficient alignment reached.

5.10 ExtractVCC ˆ

Usage of key derivation function MGF1 is undefined
in protocol. Updating of LconfirmedVotes,j not imple-
mented.

Tally Phase

Cleansing ˆ Pseudo-code algorithm is missing in Section 6.1.1.

6.1 MixDecOnlinej X

Handling of commitment key ckmix unclear. Special
case NC “ 0 treated as a special case (not necessary).
Inconsistent use of symbols ci and cdec,j . Compres-
sion of public keys unspecified in protocol. Otherwise,
sufficient alignment reached.

6.2 MixDecOffline ˆ
Same remarks as for MixDecOnlinej. Wrong order of
keys pEBsk, EBpkq instead of pEBpk, EBskq in Line 6.

6.3 DecodePlaintexts X Sufficient alignment reached.

Verification Algorithms

During the protocol execution, four verification algorithms VerifyConfigPhase, VerifyVot-
ingPhase, VerifyOnlineTally, and VerifyOfflineTally are executed by the auditors. While
high-level descriptions of these algorithms are given in [ProtSpec, Sect. 12], correspond-

16

ing pseudo-code algorithms are unfortunately missing in [SysSpec]. However, they are
included in the Verifier Specification document [VerifSpec], which we received in early
September. Each of the four algorithms defines a verification block, which itself con-
sists of multiple sub-algorithms to be called to conduct corresponding verification steps.
These sub-algorithms are listed in the following table (some of the sub-algorithms depend
on several supporting algorithms, which we are not listed in the table below).

Given the late release of this document in the middle of the examination period, we were
not able to check the alignment with the protocol in every detail. Generally, we found
it quite hard to even establish the links to the verification steps as defined [ProtSpec],
especially in the case of VerifyVotingPhase (Block 2), which consists of several relatively
complex sub-algorithms. In the case of VerifyConfigPhase (Block 1), we observed that
the first two sub-algorithms are not included in the protocol specification.

This observation raises the question of the target audience and purpose of this docu-
ment, because it seems to contain verification steps that are essential for an independent
external auditor, but not necessarily for an internal auditor involved in the protocol. In
our Scope 1 report, we have already expressed our concern regarding the extended role
of the auditor as an active protocol party, instead of a passive party that acts only in the
aftermath of an election. The impression of [VerifSpec] as a document with an unclear
target audience confirms this concern.

Block 1: VerifyConfigPhase
1.01 VerifyEncryptionParameters ˆ Not included in protocol specification.

1.02 VerifyVotingOptions ˆ

Not included in protocol specification.
Creates an endless loop if test in Line 5
fails.

1.21 VerifyEncryptedPCCExponentiationProofs ´
Corresponds to Step 2. Alignment not
further examined.

1.22 VerifyEncryptedCKExponentiationProofs ´
Corresponds to Step 3. Alignment not
further examined.

Block 2: VerifyVotingPhase
2.21 VerifyPCCExponentiationProofs ? Difficult to link with protocol.
2.22 VerifyExtractableCC ? Difficult to link with protocol.
2.23 VerifyCKExponentiationProofs ? Difficult to link with protocol.
2.24 VerifyNonFinalConfirmationAttempts ? Difficult to link with protocol.
2.25 VerifyListOfVotesWithSuccessfulConf. ? Difficult to link with protocol.
2.26 VerifyMixNetInitialPayload ? Difficult to link with protocol.
Block 3: VerifyOnlineTally

3.01 VerifyOnlineShuffleProofs ´

Corresponds to Step 1 under “Verify the
CCM’s NIZK proofs”. Alignment not
further examined.

17

3.02 VerifyOnlineDecryptionProofs ´

Corresponds to Step 2 under “Verify the
CCM’s NIZK proofs”. Alignment not
further examined.

Block 4: VerifyOfflineTally

4.11 VerifyOfflineShuffleProof ´

Corresponds to Step 1 under “Verify the
last CCM’s NIZK proofs”. Alignment
not further examined.

4.12 VerifyOfflineDecryptionProofs ´

Corresponds to Step 2 under “Verify the
last CCM’s NIZK proofs”. Alignment
not further examined.

4.13 VerifyPlaintextsDecoding ´
Corresponds to “Verify decoding”. Align-
ment not further examined.

2.2 Deviations Between System Specification and Source Code

The main goal of our source code analysis was to check its alignment with the pseudo-
code algorithms from the system specification. In our own work [2,3], based on applying
strict naming conventions and programming principles, we have shown how far the align-
ment between pseudo-code and programming code can go in an e-voting project. Our
hope upon accepting our involvement in this assessment process was to encounter an
alignment level that is comparable to ours. In certain parts of the code, which seem
to have undergone a major revision compared to earlier versions, this is actually the
case. In those parts, class and methods names can be linked easily to the specification,
variable names refer more or less one-to-one to the mathematical notation used in the
pseudo-code algorithms, and the order of the executed statements is mostly identical.
The overall matching in the revised parts of the code is not perfect, but generally very
good.

In other parts of the code, however, quite the opposite is true. There we found many
inconsistencies, naming conflicts, and other irritating differences between pseudo-code
and programming code. Sometimes, it was even difficult to locate the right code that
executes a given algorithm. Given the overall absence of similarities in those parts of
the code, checking the alignments required hard work or was simply impossible to do.
The fact that we have found two types of code of different quality, one that is relatively
clean and well structured and one that is cluttered and confusing, is a clear sign that
the source code provided is in a transitional state.

An example for this is the existence of two cryptographic libraries, the original one from
Scytl called cryptolib and a revised new one called crypto-primitives. Both libraries are
used extensively in the code, sometimes simultaneously by the same method. Currently,
there is even an overlap of functionality between the two libraries, which results in code
duplication and unnecessary redundancy. We assume that cryptolib is supposed to disap-
pear when all its functionalities have been shifted to crypto-primitives, but unfortunately

18

this process is not yet completed. In production-ready code, such incomplete transi-
tions are normally not acceptable. In Section 2.3, we will describe further observations
regarding the crypto-primitives library.

2.2.1 General Deviations

In the given pseudo-code descriptions, every algorithm has a name, a list of input pa-
rameters, a number of code lines to be executed, some local variables, and a well-defined
output. The code lines contain common control structures such as if-then-else state-
ments or classical for- or while-loops. In total, we counted 50 algorithms in [SysSpec]
and 32 algorithms in [VerifSpec]. Since this is a manageable quantity, we expected to
find a corresponding set of Java or JavaScript methods with identical names, inputs,
code lines, local variables, and outputs, ideally in more or less the same area of the
code base. This is how we understand perfect alignment between specification and code.
We already mentioned that certain revised parts of the code have reached a satisfactory
alignment level, but many other parts have not.

A major problem that clearly hinders a straight alignment in many places is the use of
complex software frameworks such as Spring, which introduces programming concepts
such as batch processing or code injections. While such frameworks are useful in general
software development projects for increasing the speed of developing code following cer-
tain repeating patterns, they also introduce additional layers of complexity. Generally,
arranging the code as intended by such frameworks tends to obscure the overall pro-
gram flow, which is in conflict with the idea of a simple implementation following the
pseudo-code as closely as possible. We have encountered cases, in which the algorithm
dissolves completely within the framework, in such way that the task of examining the
code alignment gets almost impossible. We therefore strongly recommend not using
external frameworks, at least not for implementing the given pseudo-code algorithms of
the cryptographic protocol.

We have also observed in some revised parts of the code, especially in the new crypto-
primitives library, that Java streams are often used to substitute classical iteration con-
structs such as for- or while-loops. While Java streams get increasingly popular among
developers and are a very powerful new tool, they are not optimal for implementing
critical cryptographic algorithms with the goal of optimizing their alignment with the
pseudo-code. We do not generally disapprove streams from being used for this purpose,
but then we would prefer to see them as part of a consistently applied programming
style. At the moment, some iterations are implemented with classical loops, some with
stream pipelines, and some with batch processing techniques. This diversity of technolo-
gies for essentially the same purpose makes the examination unnecessarily challenging.
Here a clear and consistent concept seems to be missing.

Another general problem is the existence of code that seems vital for the implementation
of the cryptographic protocol, but for which no pseudo-code exists in [SysSpec]. A

19

prominent example of this type is the cleansing procedure, for which a vast amount of
source code exists, but without any matching pseudo-code. In such areas of the code,
checking the alignment is inherently impossible. Another such example can be found in
the client code for submitting a ballot. According to the algorithm CreateVote in both
the protocol and the system specification, ballots are submitted unsigned, but in the
implementation, we found code for creating a signature and attaching it to the ballot.
In perfectly aligned code, protocol messages contain exactly the information as specified,
not more and not less.

2.2.2 Deviations Between Algorithms

In our tabular overview given below, we provide a distinction of different cases of mis-
alignment between the pseudo-code and programming code algorithms. An implemen-
tation diverging from the pseudo-code is marked with a cross (ˆ). An implementation
where the alignment to the pseudo-code is very hard to justify or even impossible is
marked with a question mark (?). This can happen due to naming conflicts or if the
implementation is scattered over multiple classes and methods. The case, where both
types of misalignment are present simultaneously is marked with both a cross and a
question mark (ˆ?).

Configuration Phase

4.1 GenKeysCCRj ˆ?

The specification suggests a very short imple-
mentation, however it is quite difficult to find
it in the code. k1j is not generated using
GenRandomIntegerUpperBound, but as an ElGamal
key pair.

4.2 GenVerCardSetKeys ˆ

Almost impossible to find, as it is in no correlation
with the specification. Neither does the name of the
class reflect the specification, nor its content.

4.3 GenSetupEncryptionKeys X Sufficient alignment reached.
4.4 GenVerDat ˆ There is no alignment to LpCC.
4.5 GenEncLongCodeSharesj X Sufficient alignment reached.

4.6 CombineEncLongCodeShares ? Implementation as batch-job breaks for-loop align-
ment with specification.

4.7 GenCMTable ˆ?

Implementation as batch-job. Almost impossible to
map to the specification. CMtable is created per
voter, whereas specification states one CMtable for
all voters combined.

20

4.8 GenCredDat ˆ?

Impossible to map to the specification. It boils
down to the following comment that can be found in
the class ConfigJobConfig: “This step creates and
stores in a ’cache’ bean some extra complex classes
needed for the voting card generation that are not
possible (or easy) to store in the standard spring
batch job execution context.”

4.9 SetupTallyCCMj ˆ?

The implementation does not seem to follow any
paradigm that allows any mapping to the pseudo-
code of the specification. Here, the bypassing of the
crypto-primitives library is decorated with the
following comment: “This method is equivalent to
the crypto-primitives’ GenKeyPair method.”

4.10 SetupTallyEB ˆ?

The implementation is not aligned with the three
lines of pseudo-code within the specification. The
algorithm has been ripped apart and embedded in
multiple methods. So it is very hard to find any
correlation.

Voting Phase

5.1 GetKey ?
The implementation of this algorithm is completely
teared apart. Algorithm internal values are stored
in the session and persisted over time.

5.2 CreateVote ˆ

The proof does not include iaux at all. The ballot
is signed and the signature as well as the certificate
are sent to the voting server. This is unspecified and
in fact contradicts the specification which states that
the voter is only “implicitly authenticated” [SysSpec,
Sect. 7].

5.3 VerifyBallotCCRj ˆ?

The input values for the proofs and the hash are
wrong and the required iaux is missing. The im-
plementation is in a very bad shape, and does not
provide any helping hand in mapping back to the
specification.

5.4 PartialDecryptPCCj ˆ?

The input values for the proofs and the hash are
wrong and the required iaux is missing. The imple-
mentation is in a very bad shape, and does not pro-
vide any helping hand in mapping back to the spec-
ification. Here, 5 lines of pseudo-code have been
dissolved to more than 100 lines of implementation
code.

5.5 DecryptPCCj ˆ?

In the implementation this algorithm is executed by
the voting Server and not by the control components
as specified. The variables used are not aligned with
the specification.

21

5.6 CreateLCCSharej ˆ?
Important membership checks involving LdecPCC and
LsentVots are missing. The generated proof is not
aligned.

5.7 ExtractCRC ˆ?
The CMtable is per voter. This is not aligned with
the specification where there is only one CMtable for
all voters.

5.8 CreateConfirmMessage X Sufficient alignment reached.
5.9 CreateLVCCSharej ˆ? Same situation as for CreateLCCSharej.
5.10 ExtractVCC ˆ Same situation as for ExtractCRC.

Tally Phase

Cleansing ˆ?

Even though no specification exists for cleansing, we
tried to locate the cleansing algorithm in the imple-
mentation. However, we were not able to find the
corresponding code block, not even with some help
from Swiss Post. This provides strong evidence that
the use of a complex framework, such as Spring, neg-
atively interferes with auditability.

6.1 MixDecOnlinej ˆ

The list Lbb is not reflected in the implementation.
Thus there is also no check whether bb has already
been mixed and decrypted.

6.2 MixDecOffline X

The values ee and bb are passed as input parame-
ters and not taken from context as specified. Spec-
ification should be adjusted. Otherwise, sufficient
alignment reached.

6.3 DecodePlaintexts ˆ Decoding missing in the implementation.

2.3 Crypto-Primitives

The library crypto-primitives, which has been released as a separate and independent
project, is mostly in a very good state. Most of the code can be mapped very easily to
corresponding pseudo-code algorithms in the given specification document [CryptoPrim].
We encountered a number of minor deviations and inaccuracies, but none of them are
critical. The level of alignment in this part of the system is therefore already sufficiently
high in most parts.

Based on our observations, we can make some recommendations to improve the quality of
the library even further. The first recommendations concern the pseudo-code algorithms
in [CryptoPrim]:

• Many algorithm descriptions have a section called Ensure with preconditions rela-
tive to the input variables. Other algorithm have a similar section called Require.

22

In other cases, preconditions are listed along with the input parameters, and there
are even cases where preconditions are tested explicitly in the first lines of the al-
gorithm. The difference between these four types of preconditions is currently not
clear, and this gives the impression that a proper concept for handling precondi-
tions is currently missing. We recommend adding such a concept to the document
and applying it strictly to all algorithms.

• The two algorithm parameters n and m of the shuffle proof by Bayer and Groth
can be chosen freely under the constraint N “ nm. We have seen that the selection
of n and m is implemented in a way that optimizes the size of the proof, but at
the same time maximizes the computational costs (by choosing n and m closest
to
?
N). We think that optimizing the proof size is not really necessary, i.e., we

would recommend solving this trade-off in favor of the computational costs, simply
by setting m “ 1 and n “ N . Another benefit of this particular choice is that it
renders large parts of the proof obsolete, i.e., ZeroArgument, HadamardArgument,
and productArgument from [CryptoPrim, Sect. Fig. 1] could be dropped entirely.
This would greatly help to simplify the most complex parts of both the document
and the code.

• In the proof generation and verification algorithms of [CryptoPrim, Sect. 6], the
array of auxiliary information strings iaux is always added to haux as an additional
element. This creates a nested structure of elements to be hashed. In the imple-
mentation of these algorithms, we observed that the values from iaux are added to
haux using the method concat from the Streams class. This is therefore a devi-
ation between specification and implementation, which should be eliminated. We
recommend using concatenation also in the pseudo-code, which then permits to
remove the repeating remarks “If iaux is empty, we omit it”.

We have also some remarks that may help to further improve the Java code of the
library:

• The purpose of the interface CryptoPrimitives is not clear. It has the com-
ment “Interface exposing all methods that need to be accessed outside of crypto-
primitives”, but the interface contains only four methods related to generating
random strings and random integers. The only class implementing this interface is
CryptoPrimitivesService, which is mainly a wrapper class for RandomService.
It thus seems that the interface and the class are not really useful.

• We observed that some Google libraries are used accross crypto-primitives, for ex-
ample for checking preconditions, for Base32 or Base64 encodings, or for immutable
lists. Most of the imported functionalities are relatively simple, i.e., it would not
be difficult to provide them directly. Generally, we recommend reducing the de-
pendencies to third-party libraries as much as possible, especially in cases where
the benefit of the imported library is marginal.

• Most pseudo-code algorithms depend on a context, which usually consists of several
global parameters such as the group parameters p and q. However, no such context

23

exists in the implementation, i.e., global parameters are provided implicitly, for
example by selecting the group from an input element and the generator from that
group using statements like pk.getGroup().getGenerator(). We recommend to
introduce an explicit context object, which is passed to all methods as an additional
parameter. The actual input elements can then be checked against this context.

• The algorithms are spread over a large number of classes. Many of these classes de-
fine instance variables, which are then implicit parameters for corresponding meth-
ods. We see this as a conflict between the object-oriented programming paradigm
in Java and the procedural programming paradigm in the pseudo-code algorithms,
which makes a one-to-one alignment more difficult. We would recommend to define
the algorithms as static methods which operate on pure data objects (an exception
is the algorithm GetCiphertextVectorExponentiation, which is already implemented
as a static method).

• Some algorithm names are different in the code: GetCiphertextExponentiation is
implemented as a method called exponentiate, and GetCiphertextProduct is im-
plemented as a method called multiply. We recommend applying strict naming
conventions everywhere.

2.4 Underspecified Concepts and System Components

The current implementation includes some components that are relevant for the crypto-
graphic protocol, but which are not sufficiently well specified. In some cases, the problem
seems to come from missing or unclear underlying concepts. For all the topics discussed
below, we recommend that further explanations are given in the system specification.

• In the protocol specification, the states of the involved parties are called Logs.
Corresponding objects LogsPO, LogsCCR,j , and LogsCCM,j appear everywhere in the
algorithms for collecting the received messages and the computed results of the
respective parties. In our Scope 1 report, we have already remarked that the ex-
act content of these objects is underspecified and that their purpose and structure
should be defined more accurately. Given the significance of the logs in [ProtSpec],
we were surprised to observe that the logs are not included in pseudo-code algo-
rithms and that they are not even mentioned in the whole specification document
(they are discussed in a separate section of [VerifSpec], but this is a completely
different context). On the other side, we observed that objects of type SecureLog
are included in the implementations of the CCR and verifier components, but not
in the CCM and print office components. Unfortunately, no information is given
to explain this inconsistency.

• Many of the involved components, especially the four control components, depend
on various data structures such as three different lists of voting cards LdecPCC,
LsentVotes, and LconfirmedVotes, the so-called “partial choice return codes allow list”

24

LpCC, and the list of shuffled and decrypted ballot boxes LBB. These lists are impor-
tant for keeping track of previous protocol events. Other such data structures are
the “return codes mapping table” CMtable and the “primes mapping table” pTable.
The exact shape and the initialization of these data structures is not always very
clear, for example pTable “ pp̃, ṽq seems to be a pair of two vectors rather than a
(two-dimensional) table. Sometimes, these lists and tables are treated as sets, for
example by performing membership tests such as vcid P LdecPCC,j or set operations
such as LsentVotes,j Ð LsentVotes,jYvcid (with missing curly brackets) in algorithm
CreateLCCSharej. We recommend a stricter use of common mathematical notation
in these examples. Generally, it would be good to introduce different types of data
structures (list, sets, tables, maps) in one place of the specification, together with
a discussion of their initialization, permitted operations and general properties.

• At first sight, the descriptions of the correctnessID concept seem to correspond
in [ProtSpec, Sect. 10.4] and in [SysSpec, Sect. 3.4.4], except that [SysSpec] con-
tains two trivial algorithms for selecting values from corresponding vectors. In our
Scope 1 report, we already stated that there must be two such vectors, even if
this is not evident given the description from [ProtSpec]. In addition to resolving
the current misalignment between the two documents, we recommend to better
specify the purpose, properties, and initialization of these vectors. The given de-
scription only show some exemplary values like “aaaaa1” or “bbbbb2”, but it does
not clearly specify how to select them in an actual implementation. We found an
implementation of this topic in the Class CombinedCorrectnessInformation, but
linking it to the current description in [SysSpec] is anything but obvious.

• Algorithm GenKeyPair as defined in [CryptoPrim] generates a vector of key pairs
of size N , i.e., EBsk in Algorithm SetupTallyPO is a vector of secret keys of size δ.
This is in conflict with the input parameter s of SplitSecretShares, which expects
a single secret value. It is therefore unclear how the encoding of EBsk into a single
secret value s works, such that SplitSecretShares can create corresponding shares
using Shamir’s secret sharing scheme. It is also not clear how the modulo r ą s of
the prime field Zr is chosen in SplitSecretShares, especially because s will have the
size of approximately δ¨|q| bits. These aspects must be better specified.

• A question that we raised already in Scope 1 is how the voters receive their re-
spective key stores and other election data. To the best of our understanding,
voters are never asked to enter their voting card identifier vcid, but without en-
tering vcid, selecting the correct key store seems impossible. We expected to find
better explanations in [SysSpec], but this was unfortunately not the case. Without
spending too much effort, we were also not able to quickly answer this question
by looking at the source code. We recommend including a clarifying discussion of
this topic in the specification document.

• The cryptographic protocol uses authenticated symmetric encryption at several
places. The discussion and pseudo-code algorithms in [SysSpec, Sect. 8.4] del-
egate the encryption and authentication tag generation to corresponding sub-

25

algorithms, and the same holds for the decryption and tag verification. Unfor-
tunately, these sub-algorithms are not further specified. In the comments given
on that topic, “the existence of an authenticated symmetric encryption and de-
cryption function, such as AES-GCM 128”, is assumed, but it is not clear if
this particular choice is mandatory for an actual implementation. The com-
ment itself is somewhat confusing, since AES-GCM generates the ciphertext and
the authentication tag simultaneously, whereas the two top-level algorithms Gen-
CiphertextSymmetric and GetMessageSymmetric process them separately. In the
class ConfigSymmetricCipherAlgorithmAndSpec from the cryptolib library, we
found an enum constant AES_WITH_GCM_AND_NOPADDING_96_128_BC, which indi-
cates that the AES-GCM implementation from BouncyCastle library is actually
used. However, since the cryptolib has complex APIs and code that is difficult
to understand and analyze, we cannot confirm that AES-GCM is properly imple-
mented. With respect to symmetric encryption, we recommend improving both
the level of details given in the specification and the clarity of the implementation,
with the goal of aligning to as much as possible.

2.5 Quality of Code

For assessing the code quality of a software system, there are standardized measures
for evaluating certain quality aspects—for example the degree of code duplication or
the entanglement of components—and there are various great tools on the market for
deriving these measures automatically from the code base. Knowing that others have
already analyzed the Swiss Post system using such tools, we decided not to repeat this
task. As an example of the results found by others, we depict below the summary from
applying the TÜViT/SIG Model for Software Product Maintainability to the Swiss Post
system. This example is taken from the Technical Report – Auditability Assessment E-
Voting (August 2021) by Kay Grosskop and Marc A. Hahn from sieber&partners, which
is available on the Swiss Post web page. As one can see, the system has mostly received
average or slightly above average marks for most evaluation criteria.1

1In the same report, other product quality criteria such as readability and platform choice have been
assessed. In those topics, which we consider less relevant from a security perspective, the system received
relatively good marks.

26

There are also very useful tools for static and dynamic code analysis, which can be used
to locate all kind of problems in the code, from simple formatting inconsistencies to high-
risk vulnerabilities. Other tools exist for finding performance issues or for determining
the test and documentation quality. Knowing that Swiss Post applies such tools routinely
in their development process, we decided not use them in our assessment.

Our contribution to the evaluation of the system’s code quality consists of a discussion
of certain problematical topics that we encountered while looking at the code. Each
discussed topic includes recommendations for possible improvements.

• In a cryptographic protocol, it is important that the information contained in
the exchanged messages is exactly of the expected form and consistent with given
parameters from the current context. To guarantee this property in an actual
implementations, messages received from another party must be checked rigor-
ously. A clear input validation concept is required to define the necessary checks
efficiently and to implement them consistently in all parts of the protocol. Cur-
rently, such a clear concept seems to be missing. For example, we observed
cases in which more or less the same tests are repeated multiple times for the
same data. Submitted votes, for example, are parsed and checked twice by the
CCRs. Generally, the code for performing these steps is very complex and some-
times quite confusing, as one can easily see for example by inspecting the class
PartialChoiceReturnCodesDecryptionConsumer, which belongs to the imple-
mentation of the algorithm VerifyBallotCCRj. Auditing such low-quality code is
almost impossible.

• In Section 2.2, we already mentioned the existence of two similar cryptographic
libraries with partly overlapping functionalities. This overlap implies several code
quality problems such as dead or redundant code. In some parts of the implemen-
tation, where both libraries are used simultaneously, we found rather confusing
code segments. The class CleansedBallotBoxService, which deals with ElGa-
mal encryptions using both libraries, is an illustrative example. The following
import statements of this class show the strong dependencies to both libraries.
Among the imports, three classes represent essentially the same mathematical
concept, ElGamalPublicKey and ZpGroupElement from cryptolib and GqElement
from crypto-primitives. From a software engineering perspective, the existence of
multiple units for the same concept could be called a violation of the cohesion
principle.
import ch.post.it. evoting . cryptolib .api. asymmetric . AsymmetricServiceAPI ;
import ch.post.it. evoting . cryptolib .api. exceptions . GeneralCryptoLibException ;
import ch.post.it. evoting . cryptolib . certificates . utils . CryptographicOperation

Exception ;
import ch.post.it. evoting . cryptolib . elgamal .bean. ElGamalPublicKey ;
import ch.post.it. evoting . cryptolib . mathematical . groups .impl. ZpGroupElement ;
import ch.post.it. evoting . cryptoprimitives . elgamal . ElGamalMultiRecipient

Ciphertext ;
import ch.post.it. evoting . cryptoprimitives . elgamal . ElGamalMultiRecipient

PublicKey ;
import ch.post.it. evoting . cryptoprimitives . hashing . HashService ;

27

import ch.post.it. evoting . cryptoprimitives . hashing . HashableList ;
import ch.post.it. evoting . cryptoprimitives .math. GqElement ;
import ch.post.it. evoting . cryptoprimitives .math. GqGroup ;

• The naming of classes, methods, and variables is not always optimal for achiev-
ing self-explanatory and easy-to-read code. An illustrative example is the lengthy
method name combineChoiceCodeNodesDecryptionContributions from the ser-
vice class CodesDecrypterService. Here, the intention of choosing a most ac-
curate method name results in quite the opposite, completely unreadable code
lines whenever this method is called. A few other examples of that kind are the
following:

– class PartialChoiceReturnCodesDecryptionConsumer,
– method getPartialChoiceReturnCodesVerificationInput,
– variable partialChoiceReturnCodesOrConfirmationKey.

Given these examples, it is evident that reading code lines containing such lengthy
names and mapping them to the pseudo-code becomes very difficult. To avoid this
problem, we recommend to improve existing naming conventions and to strictly
apply the revised conventions to all areas of the code.

• In Section 2.2, we already mentioned the code readability and pseudo-code align-
ment problems that result from using frameworks such as Spring. Especially the
use of batch jobs leads to code that is much harder to inspect compared to regular
code, especially for people without profound understanding of the Spring Batch
technology. To us at least, using this technology obscures the program flow con-
siderably in many critical parts of the system and therefore diminishes the overall
code quality of the system. An example of a batch job implementation is the al-
gorithm GenCredDat. The salt used to derive the keystore key KSkeyid from the
start voting key SVKid is not created in the implementation of the algorithm it-
self, but taken from the job execution context, which is pre-filled by a tasklet in
a preliminary step controlled by Spring Batch. This example demonstrates how
simplicity gets lost without any apparent benefit. Therefore, we recommend to
avoid these technologies at least in those areas of the code that are relevant for the
cryptographic protocol.

• A general code quality aspect is the strict inclusion of up-to-date libraries. This
is currently not the case. The most critical example is the dependency to the web
framework AngularJS from Google. As Long Term Support (LTS) for AngularJS
ends on December 31, 2021, Google will no longer fix security or browser compati-
bility issues. Updating the code to the new Angular framework should therefore not
be postponed any further. The update has been announced in the project repos-
itory’s readme.md file, but it still an open issue. We generally recommend using
the latest updates of all external libraries. The following list of Java libraries that
are outdated for more than one year is taken from the above-mentioned technical
report by sieber&partners. Note that some dependencies are outdated for almost 10

28

years. Generally, we also recommend moving towards a newer LTS Java version,
such as the latest Java 17 from September 2021. Support for the currently used
Java 1.8 is expected to run out in the near future.

2.6 Synchronization

In implementations of cryptographic protocols with multiple parties, there is no guar-
antee that the messages are exactly exchanged as defined in the protocol, especially if
the adversary model includes active adversaries who can deviate from the protocol in
any possible way. Therefore, messages can be blocked, delayed, modified, or replayed,
depending on the adversary’s attack strategy. Blocked or delayed messages caused by
network failures also exist in the absence of an adversary. In any case, a party expecting
certain protocol messages must be aware that the chronological order of the messages
may have been altered during transport, that copies of the same message may arrive at
different times, and even that different instances of the same type of message may arrive
from the same party. In the realization of such a party as a software component, it is
therefore important to consider these possibilities and to implement a robust strategy
for sorting out the incoming messages, the ones to be kept and the ones to be thrown
away.

The most critical situation of that kind arises when two messages of the same type
and from the same sender arrive at almost exactly the same time, for example two
different ballots from the same voter. While ordinary voters using the provided web
interface of the official election portal will normally not be able to submit more than one
ballot simultaneously, one should assume that such situations can be provoked by an
adversary, who might want to learn the choice return codes for multiple ballots. If such
a situation occurs, it is therefore critical to avoid that more than one ballot is processed
by the voting system. In the current implementation of the Swiss Post system, three lists

29

LdecPCC, LsentVotes, and LconfirmedVotes are managed by the control components for keeping
track of the submitted votes and confirmations. These lists are therefore used to decide
whether an incoming ballot or confirmation should be processed or not. In Section 2.4,
we have already criticized that as general discussion of the initialization, permitted
operations, and general properties of these lists is missing in the documentation. On
particular missing aspect in both the documentation and the implementation is the
synchronization of these lists in an environment where they are used simultaneously
in parallel processes. Without applying proper synchronization measures, it is possible
that the mutual exclusion of processing two simultaneous messages of the same voter
is no longer guaranteed. As explained above, this may then undermine the verification
properties of the underlying cryptographic protocol.

Synchronization problems of that kind are well known in general web applications with
a large number of simultaneous users, and methods to prevent them are well-known and
not difficult to implement. In the current implementation, we were therefore surprised
not to find the necessary synchronization measures that we would have expected to see
for protecting the integrity and consistency of the above lists. We discussed this topic
with some developers from Swiss Post in on online meeting, in which they confirmed
that currently no synchronization measures exist.

2.7 Randomness

As for the generation of high-quality randomness, the implementation uses the stan-
dard cryptographic pseudo-random generators (PRG) provided by the respective pro-
gramming languages. This is realized in Java using an instance of SecureRandom and
in JavaScript using the function getRandomValues from the Web Crypto API. In both
cases, using the given standard components is a legitimate decision to ensure that the
respective PRG implementations are correct with high probability. The general problem
with pseudo-randomness is to provide a high-entropy seed for the PRG initialization and
later for the re-seeding of the PRG at regular intervals. To obtain a high-entropy seed
when needed, the quality of the entropy source must be guaranteed at all times. Given
the importance of a reliable PRG for cryptographic applications, the entropy source is
therefore one of the most critical components. If an attacker succeeds in controlling the
entropy source, then the properties of the cryptographic techniques in use are no longer
guaranteed. An additional problem is the fact that attacks against the entropy source
leave almost no traces and are therefore difficult to detect.

In Java, without taking further actions, SecureRandom obtains the seed directly over
the operating system’s entropy API. This means that the security of the application
is delegated entirely to the administrator of the machine on which the application is
running. In Unix-like operating systems, the following code snippet is sufficient for re-
directing the entropy source to return a sequence of 0’s, instead of returning high-entropy
values collected from the system’s environmental noise. It only serves as an example here
to demonstrate the delicacy of the issue:

30

ln -s –force /dev/zero /dev/urandom.

From our point of view, it is not legitimate to assume that no adversary manages to
control the entropy API of the machines running the voting system. Attacks of that
kind are too simple and their consequences are devastating.

To solve this problem, we recommend to complement the seeds obtained from the de-
fault entropy source by entropy from other sources. Note that complementing seeding
with extra entropy from other sources can never decrease the quality or security of the
generated pseudo-randomness. If options exist for complementing the default entropy
source, we therefore recommend exploiting them independently of their quality. One
possibility is to extract entropy from so-called CPU execution time jitter [4] or from
unpredictable concurrency effects [1]. Both techniques can be implemented as software-
only solutions that work on any machine. For such an implementation, we recommend
following the techniques proposed in the NIST Special Publication SP.800-90B, which
includes methods for performing so-called health tests. The purpose of health tests is
to detect deviations from the intended behavior of the source with high probability and
as quickly as possible. In the attack scenario given above, a suitable health test would
immediately detect the re-directed entropy source that always returns 0. An exemplary
implementation of such methods exists in [3].

In the given Java implementation, we observed that multiple instances of SecureRandom
are used simultaneously at different places in the code, but mostly in corresponding
classes of the two cryptographic libraries cryptolib (for example in SecureRandomFactory,
CryptoRandomInteger, or CryptoRandomString) and crypto-primitives (for example in
RandomService or GqGroupGenerator). Note that each instance receives its own seed
from the default entropy source. Given the importance of this fundamental topic, we rec-
ommend limiting the responsibility of generating randomness to one single class, which is
then responsible for providing a sufficient amount of reliable entropy sources, and which
is used everywhere for generating cryptographically secure randomness.

At the client side, the most obvious attack vector results from the inclusion of numerous
external JavaScript libraries. Even though these libraries are closely observed for known
vulnerabilities, they are not tested against targeted overriding of cryptographic functions
used in other applications. An attack could therefore be as simple as a single line of
code located in a hidden place of an external library, which modifies the behavior of the
function getRandomValues from the Web Crypto API. For example, if the following code
snippet is injected into the voting client by an external library, then getRandomValues
will output a sequences of 0’s instead of the expected high-quality randomness, and this
is equivalent to submitting the vote in cleartext. Again, the code snippet only serves as
an example to demonstrate the delicacy of the issue:

window.crypto.getRandomValues=a=>a.fill(0).

31

As a counter-measure against attacks of that kind, we recommend combining different
entropy sources and keeping a reference to the original getRandomValues function of
the Web Crypto API in a private scope. Additionally, we recommend executing the cryp-
tographic core of the voting client within an iFrame-environment, in which no external
libraries are allowed.

We are aware that on the client-side, an attack against the randomness source only
affects vote privacy, and that in the given adversary model, the voting client is trust-
worthy against privacy attacks. However, we still think that simple attacks, like the one
discussed above, should be avoided to protect the system from being discredited, for
example by exposing all submitted votes in cleartext.

32

References

[1] P. Blanchard, R. Guerraoui, and J. Stainer. Concurrency as a random number
generator. Technical Report 215956, EPFL, Switzerland, 2016.

[2] R. Haenni, E. Dubuis, R. E. Koenig, and P. Locher. CHVote: Sixteen best practices
and lessons learned. In R. Krimmer, M. Volkamer, V. Cortier, R. Goré, M. Hap-
sara, U. Serdült, and D. Duenas-Cid, editors, E-Vote-ID’20, 5th International Joint
Conference on Electronic Voting, LNCS 12455, pages 95–111, Bregenz, Austria, 2020.

[3] R. Haenni, R. E. Koenig, P. Locher, and E. Dubuis. CHVote protocol specification
– version 3.2. IACR Cryptology ePrint Archive, 2017/325, 2020.

[4] S. H. Müller. CPU time jitter based non-physical true random number generator.
Technical report, atsec information security, 2014.

33

	Management Summary
	Introduction
	Relevant Documents
	Source Code
	Purpose and Scope of Examination
	Summary of Findings

	Topics of Examination
	Deviations Between Protocol and System Specification
	Deviations Between System Specification and Source Code
	Crypto-Primitives
	Underspecified Concepts and System Components
	Quality of Code
	Synchronization
	Randomness

