Analysis of the Swiss Post e-Voting System
Audit Scope 1: Cryptographic Protocol

Aleksander Essex

Department of Electrical and Computer Engineering
Western University, Canada
aessex@uwo.ca

November 26th, 2021

Submitted to the Swiss Federal Chancellery



Table of Contents

Summary of Findings. ... i i
Key Versions of this Report . ... ... . ii
1 Introduction .. ... ... ... 1
General Impressions. . ....... ... 1

1.1 Structure of This Report . ... . 1
1.2 Key Recommendations. .......... ... .. i 2

2 Scope of Engagement .. ... ... .. 4
3 List of Documents Examined .......... ... .. .. .. . . 4
4 Individual verifiability ......... .. .. . 6
5 Universal verifiability .. ........ .. . 7
6 Ballot SECTeCy . . . oot 7
7 Authentication. ... ... ... . 8
8 Proof soundness. .. ... ... .. 9
9 Definitions and Descriptions ... ...... ...t 10
9.1 System Specification. ..............iii 11
9.2 Primitives Specification ... ... ... . . 12
9.3 Verifier Specification. ........ ... ... 23

10 Compliance with protocol requirements ............ ... .. ... ... ... .. .... 24
A Restrictions and Limitations .. ......... .. .. ... 26

B Author Bio .. ..o 26



Summary of Findings

I was retained by the Swiss Federal Chancellery to examine the e-voting solution of Swiss
Post in relation to the Chancellery’s ordinances on electronic voting (OEV), specifically
in regards to the cryptographic components and their respective security properties.

Based on my previous experience in cryptographic election verification, my main goal
was to assess how or whether the various players could manipulate the constituent zero-
knowledge proofs to produce an unintended outcome as a result of common issues like
improper parameter testing, insufficient hashing context, parameter trapdoors, etc.

Although I found the Swiss Post system to be highly complex, overall it appears
well designed and documented. Furthermore, I believe a serious effort was made by the
designers not only to address the specific vulnerabilities found by Teague et al. [11] in the
system’s predecessor, but also to address the underlying process, design methodology,
and culture that led to them.

Acknowledging that I cannot conclude the system is free from vulnerability, my anal-
ysis did not find any serious vulnerability. Similarly, I did not find any obvious instance
in which the system substantively diverges from the apparent intent of the OEV. I do,
however, make several recommendations for improving the system.



Key Versions of this Report

1. Preliminary Analysis of the Swiss Post e-Voting System.
— Date: September 1st, 2021

— Description: A preliminary analysis of Swiss Post e-Voting system as of August
2021. Referred to throughout this document as the preliminary report.

2. Analysis of the Swiss Post e-Voting System (this document).
— Date: November 26th, 2021

— Description: An extension of the preliminary report to include comments on
changes made by Swiss Post in response to the preliminary report. Also contains
a preliminary analysis of the verifier specification, which was not available for
review at the time of the preliminary report.

i



1 Introduction

This report examines Swiss Post’s e-voting proposed in relation to the cryptographic
components employed to address the Swiss Federal Chancellery’s ordinances on electronic
voting (OEV).

The cryptographic components of the proposed Swiss Post e-voting system are ex-
tensive and complex—likely too complex for most individuals to internalize completely.
Nevertheless, this complexity (especially due to Bayer-Groth mixnets and multi-recipient
ElGamal) appears necessary to address the unique functional requirements of the elec-
toral system of the prospective users (i.e., cantons) and the specific requirements security
requirements of the OEV. As a result, however, the system poses challenges to indepen-
dent review due to the extent of its technical depth and its documentary breadth.

This review focuses primarily on the individual zero-knowledge proofs made by the
system and players (less on the overall proofs of security). Based on my previous experi-
ence in cryptographic election verification, my main goal was to assess how or whether the
various players could manipulate these zero-knowledge proofs to produce an unintended
outcome.

In particular, I examined the degree to which these proofs involved sufficient context
in the Fiat-Shamir heuristic hash challenge [2|, whether sufficient checking was done
of inputs to algorithms [6], and whether the possibility of trapdoored parameters was
adequately mitigated [11],[8].

General Impressions. My overall impression is that Swiss Post has made a serious
and substantive effort to address the OEV requirements and be fully transparent and
responsive to the independent examiners. I commend them for dedicating themselves so
thoroughly to this process.

My overall impression of the Swiss Post system is that, while complex, it is serious
and substantive in terms of the evidence it would generate toward convincing voters
and auditors of a genuine election outcome. In particular the approach to the zero-
knowledge proofs (Algorithms 6.1-6.9 of the primitives specification) seems more con-
strained from the attacker’s perspective than textbook sigma protocols (e.g., Schnorr,
Chaum-Pedersen).

1.1 Structure of This Report

This report is an extension to my preliminary report of September 1st. In the interim,
Swiss Post continued to make updates to its algorithms and documentation and re-
sponded to selected issues raised in the preliminary report.

Timeline of Events

— September 1st: Preliminary report examined the Swiss Post protocol documenta-
tion as of August 2021.



— November 19th: Swiss Post returned my preliminary report annotated with issue
IDs (numbered 1-137 inclusive).! They directly responded to issues 73-75, 78, 92,
103, 105, 107, 113-7, 120-2, 123, 133-7.2 They also included several general responses.

— November 26th: This report responds to their responses and makes additional
recommendations. It also examines algorithms introduced in updated versions of the
documentation, including the verifier specification published after the preliminary
report.

Note: Since the preliminary report was written, several algorithm numbers have changed
in more recent versions of Swiss Post’s documentation. This report maintains the al-
gorithm numbering from the document versions cited in the preliminary report unless
otherwise stated.

Changes Made Since the Preliminary Report

This report preserves the structure and content of the preliminary report, but adds Swiss
Post’s responses (and my responses to their responses) inline with the relevant issue.
Section 1.2 makes several new recommendations. Section 9.3 has been added discussing
the recently added verifier specification.

1.2 Key Recommendations

Key Recommendations of the Preliminary Report: Acknowledging that I cannot
conclude the system is free from vulnerability, the analysis in my preliminary report did
not identify any serious vulnerabilities or issues. With that said, the preliminary report
identified several opportunities for improvement. These recommendations, as well as the
progress made since the original report are as follows:

1. Make documentation more explicit about the requirement to ensure all inputs to
cryptographic algorithms have the expected form, especially algebraic groups.

— Progress: Some progress has been made, although Swiss Post is hesitant about
the computational overhead of explicitly checking the validity of every argument
at the input of every algorithm. I have, in turn, suggested better labeling of
validity assumptions.

2. Make sure the expected algebraic groups produce the desired outcomes, especially
with regard to the distinction between Z; and Zj, and the distinction between G4
(which includes 1) and the generators of G4 which does not.

— Progress: This report contains additional discussion of this point. In essence,
Swiss Post is taking an algorithm-by-algorithm approach, which appears to be
acceptable.

! Due to time, I have not incorporated these IDs into this report.

2 This reference to these issue IDs is intended for Swiss Post’s benefit. This report can still be understood
without explicitly mapping IDs to issues.



3. Increase the default and extended security level. Remove the insecure testing-only
security level.

— Progress: Some progress has been made, with Swiss Post committing to de-
veloping more efficient algorithms supporting the extended key size. The trivial
testing-only security level has been retained, however.

4. Provide more detail about the consequences of violating major trust assumptions
(e.g., print office, quantum computation, physical attacks against the mail system,
etc.).

— Progress: Little progress has been made, although these points have been ac-
knowledged and may be addressed in future versions.

Key Recommendations of This Report: This report includes the responses made
by Swiss Post to the preliminary report with some additional responses from me. These
responses appear beside the relevant findings below.

1. Under-specified authentication. Section 2.8 of the OEV requires “effective au-
thentication.” Swiss Post does, however, not fully address the question of voter iden-
tity and authentication, especially the question of: (a) what is sufficient to allow
someone to cast a vote on another voter’s behalf, and (b) how feasible is it. Their
explanation is that this authentication is ultimately out their control, and different
cantons take different approaches to the problem. At a minimum, however, Swiss
Post should still prescribe approaches it considers acceptable.

2. Labeling trusted parameters in algorithms. For efficiency reasons, Swiss Post
wants to avoid checking the cryptographic integrity and validity of inputs to each and
every algorithm. This may be risky. Different algorithms are called by different parties
at different times, and there needs to be some guarantee that all data ingested by each
algorithm will be have been rigorously checked at the current end-point/execution
environment prior to use. If this does not happen within the algorithm itself, it can
be harder to track parameter validity across successive function calls. Developers
(incl. future Swiss Post developers and independent verifiers) cannot be left to their
own devices in this regard. Given the industry’s [8] and even Swiss Post’s [11]) track
record of parameter hygiene in the discrete logarithm setting, I recommend that, at
a minimum, every algorithm explicitly label which input parameters carry a validity
assumption.

3. Response follow-through. Swiss Post generically acknowledged many of the minor
recommendations I made in my preliminary report, and agreed to address them in
future versions of the documentation. However, of the 137 issues they acknowledge in
the preliminary report, Swiss Post only directly responded to 22. Most of the other
issues still appear to be unaddressed in the updated versions of the documentation.
As a concrete example: the crypto primitives specification contains a small mistake in



Algorithm 6.9 (Version 0.9.5). Swiss Post labeled this as issue #130 in its response.
This issue, however, is still present in the current version (0.9.8).

4. Integrity verification. The verifier specification describes an integrity verification
category which ensures “data elements correspond to the specification” (i.e., have the
correct range, type, set memberships, etc.). However, the verifier specification does
not explicitly and exhaustively prescribe data integrity checks for the relevant data
elements (e.g., checking group membership, etc). Since the verifier specification may
be used by independent (non-Swiss Post affiliated) developers, there can be no room
for interpretation.

2 Scope of Engagement

I was engaged by the Swiss Federal Chancellery to examine the security of Swiss Post’s
proposed e-voting solution. They asked me to provide this report setting out my views
and recommendations in accordance with Scope 1 (Cryptographic Protocol) outlined in
the Chancellery’s Audit Concept document.? Specifically, I was asked to comment on
the Swiss Post system’s compliance with the following requirements of Chapter 2 of the
OEV Annex:

Section 2.5 (Individual verifiability)

— Section 2.6 (Universal verifiability)

(
(

Section 2.7 (Ballot secrecy)
(

— Section 2.8 (Authentication)

Section 2.11 (Proof soundness)

— Section 2.13 (Definitions and Descriptions)

Section 2.14 (Compliance with protocol requirements)

3 List of Documents Examined

In preparing this report, I reviewed and relied upon the following documents in addition
to any other documents specifically noted elsewhere in this report:

1. Federal Chancellery Ordinance on Electronic Voting (OEV), Swiss Federal
Chancellery.

— Version: Draft of 28 April, 2021

3 Audit Concept for Examining Swiss Internet Voting Systems. Swiss Federal Chancellery. Version 1.3,
May 18, 2021.



— Awvailable: https://www.bk.admin.ch/dam/bk/en/dokumente/pore/0EV_draft¥%20for%20consultationy
202021 .pdf .download.pdf/0EV_draft’20for%20consultation’202021. pdf

— Description: Primary legal document outlining relevant technical requirements,
particularly the cryptographic requirements for complete verifiability. Referred
to throughout this document as the “OEV.” All references to “Section XX of
the OEV” refer to the Technical and Administrative Requirements of Electronic
Voting in the OEV’s Annex (as distinguished from the OEV’s articles.)

2. Cryptographic Primitives of the Swiss Post Voting System, Swiss Post.
— Version examined in the preliminary report: 0.9.5, 2021-06-22
— Version examined in this report: 0.9.8, 2021-10-15

— Available: nttps://gitlab.com/swisspost-evoting/crypto-primitives/crypto-primitives/-
/blob/master/Crypto-Primitives-Specification.pdf

— Description: Pseudocode specifications of cryptographic functions used by the
Swiss Post system. Referred to throughout this document as the primitives spec-
ification.

3. Swiss Post Voting System Specification, Swiss Post.
— Version examined in the preliminary report: 0.9.6, 2021-06-25
— Version examined in this report: 0.9.7, 2021-10-15

— Awvailable: https://gitlab.com/swisspost-evoting/documentation/-/blob/master/System/
System_Specification.pdf

Description: Document describing the steps, phases and procedures of setting
up, executing and verifying an election using the Swiss Post system. Referred to
throughout this document as the system specification.

4. Swiss Post Voting System architecture document, Swiss Post.
— Version examined in the preliminary report: 0.9, 2021-07-01
— Version examined in this report: 0.9.1, 2021-08-17

— Awvailable: https://gitlab.com/swisspost-evoting/documentation/-/blob/master/System/

SwissPost_Voting_System_architecture_document.pdf


https://www.bk.admin.ch/dam/bk/en/dokumente/pore/OEV_draft%20for%20consultation%202021.pdf.download.pdf/OEV_draft%20for%20consultation%202021.pdf
https://www.bk.admin.ch/dam/bk/en/dokumente/pore/OEV_draft%20for%20consultation%202021.pdf.download.pdf/OEV_draft%20for%20consultation%202021.pdf
https://gitlab.com/swisspost-evoting/crypto-primitives/crypto-primitives/-/blob/master/Crypto-Primitives-Specification.pdf
https://gitlab.com/swisspost-evoting/crypto-primitives/crypto-primitives/-/blob/master/Crypto-Primitives-Specification.pdf
https://gitlab.com/swisspost-evoting/documentation/-/blob/master/System/System_Specification.pdf
https://gitlab.com/swisspost-evoting/documentation/-/blob/master/System/System_Specification.pdf
https://gitlab.com/swisspost-evoting/documentation/-/blob/master/System/SwissPost_Voting_System_architecture_document.pdf
https://gitlab.com/swisspost-evoting/documentation/-/blob/master/System/SwissPost_Voting_System_architecture_document.pdf

— Description: Document describing the software engineering methodology, prac-
tices and requirements. Referred to throughout this document as the architecture
specification.

5. Protocol of the Swiss Post Voting System, Swiss Post.

— Version examined in the preliminary report: 0.9.10, 2021-06-25

Version examined in this report: 0.9.11, 2021-10-15

— Available: https://gitlab.com/swisspost-evoting/documentation/-/blob/master/Protocol/
Swiss_Post_Voting_ Protocol_Computational_proof.pdf

— Description: Document describing the cryptographic primitives and protocols
of the Swiss Post system and the various security proofs thereof. Referred to
throughout this document as the protocol specification.

6. Swiss Post Verifier Specification, Swiss Post.
— Version examined in the preliminary report: Unavailable at time of writing.
— Version examined in this report: 0.9.1, 2021-10-15

— Awvailable: nttps://gitlab.com/swisspost-evoting/verifier/verifier/-/blob/master/

Verifier_Specification.pdf

— Description: Document describing the algorithms and checks that an indepen-
dent verifier of the Swiss Post system would undertake to verify the correctness
and validity of the election parameters, proofs, and ultimately, the election results.
Referred to throughout this document as the verifier specification.

4 Individual verifiability
Section 2.5 of the OEV addresses requirements for individual verifiability:

The voter is given a proof ... to confirm that the attacker has not altered any partial
vote before the vote has been registered as cast in conformity with the system;

The voter is given a proof ... to confirm that the attacker has not maliciously cast
a vote on the voter’s behalf which has subsequently been registered as a vote cast
in conformity with the system and counted.

The Swiss Post system relies on the server responding to a voter’s selection with confir-
mation codes (choice return codes) and upon the voter’s casting of the ballot (vote case


https://gitlab.com/swisspost-evoting/documentation/-/blob/master/Protocol/Swiss_Post_Voting_Protocol_Computational_proof.pdf
https://gitlab.com/swisspost-evoting/documentation/-/blob/master/Protocol/Swiss_Post_Voting_Protocol_Computational_proof.pdf
https://gitlab.com/swisspost-evoting/verifier/verifier/-/blob/master/Verifier_Specification.pdf
https://gitlab.com/swisspost-evoting/verifier/verifier/-/blob/master/Verifier_Specification.pdf

return code). See e.g., §20.5 in the protocol specification. This approach to “code voting”
mostly common and consistent with the literature. Due to time, I was unable to closely
examine this aspect of the system.

5 Universal verifiability

Section 2.6 of the OEV addresses requirements for universal verifiability.

The auditors receive a proof ... to confirm that the attacker, after the votes were
registered as cast in conformity with the system, did not alter or misappropriate
any partial votes before the result was determined.

The auditors receive a proof ... to confirm that the attacker did not insert any
votes or partial votes mot cast in conformity with the system which were taken
into account in determining the result.

The Swiss Post system relies on various zero-knowledge proofs (§6 of the primitives speci-
fication) and the verifiable mixnet of Bayer and Groth (§5 of the primitives specification).
Due to time, I was unable to closely examine the verifiability of the mixnet. The other
zero-knowledge proofs, however, are largely consistent with standard approaches in the
literature. Detailed comments on these proofs are given in §9 below.

As a comment on the OEV’s definition, the term universal verifiability has tradition-
ally been applied in the literature in reference to a proof anyone could check/verify, not
only a set of auditors. Additional comments are provided below.

6 Ballot secrecy

Section 2.7 of the OEV addresses requirements for voting secrecy and absence of prema-
ture results.

2.7.1: It must be ensured that the attacker is unable to breach voting secrecy or
establish premature results unless he can control the voters or their user devices.

The trust assumptions in the protocol specification document (see, e.g., Tables 1, 2)
states that the print office, which “prints the code sheets”, is trusted with maintaining
the privacy of the voter—candidate—code associations. However, unlike other code-voting
systems (e.g., Scantegrity [3]), the code associated with the voter’s chosen candidate is
encrypted and never directly revealed to any party outside the voter’s physical environ-
ment or device, which is consistent with requirement 2.7.1.

2.7.2: With the exception of the person voting and his or her user device, system
participants who have enough information to breach voting secrecy or to collect
premature results are not considered protected against the attacker.



Since Swiss Post presumably would be responsible for mailing the code sheets, I suggest
that Swiss Post clarify if they envision acting as the fully trusted Print Office, or as an
independent party with comparable trust assumptions.

2.7.3: It must be ensured that the attacker cannot take control of user devices
unnoticed by manipulating the user device software on the server. The person
voting must be able to verify that the server has provided his or her user device
with the correct software with the correct parameters, in particular the public key
for encrypting the vote.

The Swiss Post solution uses a browser-based approach for vote casting as opposed to
a mobile app-based approach. The pros and cons of each are discussed in the documen-
tation (See §4.1 of the architecture specification). I see the merits of both approaches,
however, with browser based voting, verifying the URL and the authenticity of the TLS
connection is slightly more the user’s responsibility, and in practice could lead to is-
sues resulting from phishing, TLS stripping [4], weak TLS configurations [12| and TLS
proxying |7]. However, our survey of the TLS configurations of 100 election websites in
2018 actually found Swiss Post was the only election agency fully protecting against TLS

stripping [5].

7 Authentication

Section 2.8 of the OEV addresses requirements for voter authentication.

It must be ensured that the attacker cannot cast a vote in conformity with the
system without having control over the voters concerned.

Authentication of the voter to the voting server (beyond what is written on the code
sheet itself) appears to largely unaddressed by the documentation (see, e.g., protocol
specification §13.1). It was unclear whether a voter logs into and authenticates to the
voting server (e.g., username, password.) Would attacking the mail system and stealing
the voter code sheet package provide sufficient information to cast a vote on a voter’s
behalf? I did not see anything in the documentation seemingly addressing this possibility.

SP Response. “The documentation does not directly address this point since authenti-
cation differs from one canton to another.” SP highlights two scenarios:

1. Cantons integrating e-Voting into an existing e-Government portal. Authentication
elements include: username, password, and a second factor (e.g., authentication app).

2. Cantons running e-Voting from a website (e.g., evoting.ch). Authentication would
require “additional information such as date of birth.”

My Response. Swiss Post’s response ultimately does not address Section 2.8 of the
OEV. Although SP’s response suggests that, strictly speaking, the voter code sheet is



not sufficient to cast a vote on a voter’s behalf, perhaps a better question is to ask how
feasible it is for someone already with another voter’s code sheet to gather the remaining
credentials.

Dates of birth, for example, are of dubious value for authentication purposes. They
(a) cannot be changed in the event of a breach, (b) are low entropy even under ideal
circumstances, (c) are not often well-protected from public view* and are well known to
many other individuals in a voter’s immediate social circle. Plausible threat actors in this
setting include friends, family and even local community leaders engaging in credential
theft or gifting such we have observed in Canada’s e-voting experiences [4].

The OEV itself may need additional language. Currently, authentication is posed in
terms of an attacker’s ability to maliciously access a voter’s account without “having
control over” the voter. The notion of control needs additional defining language.

A relevant question seemingly not addressed by the OEV is how easily credentials
can be transferred to another individual. For example, I spoke to several candidates in
the Ontario Municipal election who described instances of what could be described as
vote gifting whereby a voter gave a friend of neighbor the mail envelope containing their
login PIN. A voluntary act obviously transcends the notion of control, yet intuitively it
seems like a weak approach to authentication that such an “attack” could be so casually
accomplished.

Consider two e-voting systems: System A requires a simple username and password.
System B additionally requires a mobile device to take a 3D picture of the voter using
technology to detect presentation attacks.® In System A, physical entity and digital
identity are trivially separable and a voter’s credentials can be easily transferred to
arbitrarily many remote parties. The credentials of System B, however, is non-trivially
connected to the voter’s live, physical presence.

8 Proof soundness

Section 2.11 of the OEV addresses requirements for the soundness of the cryptographic
proofs.

2.11.1: The probability of the attacker being able to falsify a proof under Number
2.5 if he changes a partial vote, suppresses a partial vote or casts a vote in someone
else’s name must not exceed 0.1%.

Falsifying a proof of individual verifiability in the Swiss Post system would require the
attacker to provide a valid choice return code of another selection (candidate). The codes
are 4-digits. Assuming that (a) the codes are uniformly and randomly generated, (b) the
attacker is not able to directly decrypt a return code (i.e., is relegated to guessing a valid
code), (c) the attacker was not able to obtain the code sheet from the print office or by
attacking the mail system responsible delivering it to the voter, and (d) assuming that

4 Even Swiss Post’s website discloses their CEQ’s birth year (1971).
5 see e.g., ISO 30107-3 https://www.iso.org/standard/79520.html


https://www.iso.org/standard/79520.html

voter would reliably identify an incorrect choice return code and take appropriate action
(contrary to research [13]), then yes, the probability of successfully falsifying the choice
return code in the Swiss Post system would not exceed 1/(10)* = 1/10,000 or 0.1%.

2.11.2: The probability of the attacker being able to falsify a proof under Number
2.6 if he causes the calculated result to deviate by 0.1% from the correct result by
altering and suppressing votes cast in conformity with the system or by entering
votes not cast in conformity with the system may not exceed 1% per proposal, list
election or candidate election.

The probability that a proof of universal verifiability could be falsified in the Swiss Post
system exceeding the defined threshold is based on computational hardness assump-
tions, e.g., not being able to compute the discrete logarithm of one generator relative
to another in the Pedersen commitment scheme, as well as the general soundness of the
zero-knowledge proofs. To the latter point, particular attention must be paid to test-
ing/ensuring all function inputs have the expected algebraic form/set membership. See
comments pertaining to the primitive specification made in §9 below.

2.11.3 If the probability of the attacker being able to falsify a proof under Number
2.6 1is not negligible in the cryptographic sense, it must be possible to reduce the
probability of success as desired by repeated tallying, by providing the auditors with
an additional, independent proof under Number 2.6 for each count.

This provision appears to not appear to apply to the Swiss Post system.

9 Definitions and Descriptions

Section 2.13 of the OEV addresses requirements for definitions and descriptions of the
cryptographic protocol.

2.13.1: Wherever possible, building-blocks are used that are in widespread use
worldwide and have been thoroughly scrutinised by experts. Standards, reference
projects and scientific publications can be used as a benchmark. Derogations and
cases of doubt must be dealt with separately in the context of the risk assessment
referred to in Article 4.

2.13.2: Instructions must not be underspecified. Individual instructions must re-
strict the options for implementation to such a degree that any form of implemen-
tation that the instructions allow is also compliant with meeting the cryptographic
protocol requirements.

10



9.1 System Specification

The following remarks pertain to the system specification document in relation to OEV
requirements 2.13.1 and 2.13.2:

— The Preliminaries section (§3.1-3.3) of the system spec seems to repeat much of §2
of the primitives specification document and could likely be merged.

e SP Response: This redundancy has been eliminated and now points to the
primitives specification document for relevant information.

— §3.4.1: What is the purpose of the distinction between the verification card and the
voting card?

o SP Response: “We have this distinction purely for historical reasons. The voting
card ID is printed on the code sheet, while the verification card ID is internal to
the voting system.”

— §3.4.3 (Voting Options): Please clarify that the product of prime numbers is expected
to not have experienced a modular reduction, and therefore factoring a value o does
not involve attempting to factor o + iq for values of ¢ > 0.

e SP Response: The verifier specification (not available at the time of the prelim-
inary report) specifically checks for this.

— Algorithms 3.11 and 3.12 do not seem to enforce an upper bound on products of
primes, and it is not clear from Tables 11 and 12 how many candidates can be
accommodated by the default parameters.

— §3.4.4: Tt is not clear how the CorrectnessID’s prevent an invalid plaintext from being
encrypted. This section would benefit from additional background/explanation.

— Algorithm 4.4, Line 8: The HashAndSquare function does not appear to perform a
modulo reduction, meaning that it implicitly relies on the RecursiveHash hash func-
tion to output a hash value h such that |h| < |\/(p)|, otherwise it is possible for
HashAndSquare to output a value larger than p, and therefore not in G,. This should
not be left as implicit, and I recommend including an explicit modulo reduction
on the squared value so the reader does not have to go through a similar crypto
self-diagnostic.

e SP Response: Explicit modulo reduction was added in 0.9.8 of the primitives
specification.

— Algorithm 8.9: Why is PBKDF parameterized to 32,000 iterations? Cite relevant
standard.

11



— Algorithm 8.10: AES-GCM is initialized with a 96-bit IV, which is smaller than the
block and key length (i.e., 128-bits). Please explain why a smaller IV was selected
and why it is acceptable (e.g., recommend citing [9], which explicitly addresses this).

9.2 Primitives Specification

The following remarks pertain to the cryptographic primitives specification document in
relation to OEV requirements 2.13.1 and 2.13.2

Symbols. The symbols and notation (Symbols section of the primitives specification)
are mostly standard and would be readable by someone with a cryptography background.
A few points of clarification are recommended:

— Gy is used to denote the set of quadratic residues modulo p, which forms a group
of order g, which must be a sufficiently large prime in the Swiss Post system. This
requirement should be explicitly stated.

— N* is used to denote the set of positive integers. This notation is somewhat overloaded
and could lead to confusion in at least two unintended ways:

e The notation S&* in the context of a set of strings S is used to denote the Kleene
star.

e The notation S* in the context of a set of integers S is used to denote a cyclic
multiplicative group.

A more standard notation (at least in my experience) would be Z*.

— p is used to denote the modulus. In this application, it is required that p is a large
safe prime. This requirement should be explicitly stated.

— ¢ is used to denote the non-trivial subgroup of Z;. In this application, it is required
that ¢ is a large prime. This should be explicitly stated.

— Throughout the document, lowercase [ is used (see e.g., Algorithm 3.3), however for
visual clarity, the explicit ¢ (i.e., \ell) is preferred.

Basic Data Types. The basic data types (Section 2 of the primitives specification)
include standard bit/byte/integer/string type conversions, encodings (basel6, base32,
base64). The approaches of Algorithms 2.1-2.8 all appear standard and correct (with
the following exceptions):

— Algorithms 2.1, 2.3, and 2.5 output a string S, respectively in: Apgse16, ABase32,
ABgsega. Algorithms 2.2, 2.4, and 2.6 input a string S, respectively in: Apgseis,
ApBases2, Apasess. Each such set A, respectively denotes the string’s alphabet, imply-
ing the string is a single character in length. An arbitrary string over this alphabet
should be indicated with the Kleene star notation (A,)*.

12



— The application of the Kleene star should be in superscript of the set, i.e., Aj;~g, or
ideally (Apcs)*, not Aycgx (see e.g., Algorithm 2.10).

— The verum T and falsum L truth symbols used throughout (e.g., Algorithms 2.4, 2.6,
etc.) should be explicitly defined in the Symbols section.

— Algorithms 2.4, 2.6 seem to draw a distinction between “return” and “output,’
which should be defined.

— The output set of Algorithms 2.4 and 2.6 is listed as a byte array B*, but technically
the function’s codomain includes the falsum symbol, i.e., B* U {L}

— Apostrophes as a decimal separator for large numbers will likely confuse to North
American and many European readers. For example, one million is represented in the
documentation as 1'000’000. This notation should be explicitly defined as many Eu-
ropean readers would expect the notation 1.000.000 whereas North American readers
would expect 1,000, 000.

— The range notation used throughout, i.e., i € [0,n) is relatively commonplace, but it
is recommend that the inclusion/exclusion be made explicit, i.e., that 0 < i < n.

e SP Response: Addressed in §1.1 of updated primitives specification.
— Algorithm 2.8 calculates byte length as [%L whereas Algorithm 3.1 invokes the

redundant bytelength() functionality.

Basic Algorithms The basic algorithms (Section 3 of the primitives specification)
include algorithms for generating random integers, vectors, and strings given a non-
deterministic randomBytes (). These approaches all appear standard and correct. I did
not observe anything in Algorithms 3.1-3.5 that would to lead biases in the output (cf.
e.g., [6]). However in terms of specification, I make the following recommendations.

— The input and output sets, as well as the uniformity of the output distribution of the
randomBytes function, should be explicitly stated.

— The randomBytes capitalization should be RandomBytes to be consistent with the
other functions.

— The Tolnteger in Algorithm 3.1 should be ByteArrayTolnteger.
— Algorithms 3.1 and 3.2 use the terms “upper bound” and “upperbound” respectively.
— Algorithm 3.1 should more precisely output a random ¢nteger, not just a number.

— The functionality of the Truncate function invoked in Algorithms 3.3-5 is reasonably
obvious but should still be defined.

13



— Section 3.2 points out that when invoking the recursive hash, it is the “caller’s re-
sponsibility to ensure only finite inputs are provided in practice.” Is there such thing
as an infinite input in practice?

— How is the “pseudo-random hash function” of the recursive hash (Algorithm 3.6) de-
fined? Why not just assume the hash function is a random oracle (or computationally
indistinguishable from one)?

— The recursive hash requires domain-separation, i.e., RecursiveHash(’A’, 'B’) does not
yield the same result as RecursiveHash(’AB’). The approach internally seems to be es-
sentially to compute RecursiveHash(’A’, 'B’) essentially as Hash(Hash(’A’)||Hash(’B’)),
which seems plausible, if non-standard. We know from other related applications
(such as HMAC), however, that simple combinations of hashing could be insufficient
at preventing certain attacks (such as length-extensions). Can we be certain Algo-
rithm 3.6 explicitly prevents attacks like these? Is there analysis that can be invoked
from related constructions (e.g., CHVote)?

— The recursive hash does not seem to enforce type separation, e.g., it appears as though
RecursiveHash(255)—=RecursiveHash(0xff). I do not see an immediate exploit, but it
seems as though enforcing type separation (e.g., RecursiveHash(255)!=RecursiveHash(0x£f))
would be a safer choice in the context of domain separation.

e SP Response: Explicit type separation was added to RecursiveHash by prepend-
ing an unique type identifier byte to each pre-image. The defined types are: byte,
integer, string.

— I find Algorithm 3.6 challenging to read. For example, V is a domain, but V* is a set,
but it is “recursively defined.”

e SP Response: Notation closely follows Algorithm 4.15 of the CHVote specifica-
tion [10].

ElGamal. The ElGamal specification (Section 4 of the primitives specification) in-
cludes algorithms for generating domain parameters, key pairs, and verifiable encryp-
tion/decryptions. These approaches (e.g., parameter creation, multi-recipient encryp-
tion) all appear standard and correct. I did not observe anything in algorithms 4.1-4.11
that would lead to incorrect decryption or loss of privacy outside of the standard compu-
tational hardness assumptions. However, the algorithms specifications could be improved
in the following ways:

— Section 4.1 says: “Since p and ¢ are primes....” However, as noted in the Notation
paragraph above, the primality of these values was never explicitly stated.

— This section goes on to say: “the ElGamal encryption scheme specifies the default
generator g as the smallest element in G,.” Did Tahir Elgamal actually specify this?
Citation?

14



e SP Response: They are following precedent.’

e My Response: I have tried to trace the origins of this guidance. The earliest
example I can find comes from the OpenSSL project, which discussed it in an
email in 1995.7 This email also, curiously, directs them to pick a generator of
Z,, instead of G4. OpenSSL and numerous other projects follow this advice 8],
leading to the least-significant bit of the exponent being revealed. Although the
Swiss Post system does not do this, it does illustrate the risk of taking a TLS-
centric use case and applying it to an advanced Decisional Diffie-Hellman (DDH)
use case.

— Technically, there is no “smallest” element in a cyclic group in the same way there is
no first point on a circle. Perhaps “the smallest integer x>1 such that x is a generator
of Gg.”

— Table 5 uses the term “Strength,” however I recommend using the term “security
level” to be more in line with the cited NIST and ECRYPT standards (citations [2],
[1], [21] in the primitives specification).

— The verifiable generation of safe prime p in Algorithm 4.1 seems sufficient to avoid
the trapdoored attacks suggested by Teague et al. [11].

— There are sufficiently many ways to approach primality testing that the algorithm
IsProbablePrime is likely underspecified relative to OEV §2.13.2.

— In the Algorithm 4.1 context, security level A relates to the security level of |p| and
|g|. However, in line 8, it appears to be the number of rounds in the probable prime
test, which is an independent notion.

— Algorithm 4.1 lines 1014 pick the “smallest” generator of G,. What is the justification
for picking the smallest generator instead of, say, the smallest guaranteed generator
(i.e., smallest square)? In other words, if g € {2,3,4}, why not just always output
g = 47 Are lines 10-14 necessary? Suppose there was a security benefit to not always
picking g = 4. If such a benefit existed, it could always be trivially circumvented.
Because the generator space is so small, the election agency would only need to try
one or two trivial variations of the election name to cause Algorithm 4.1 to output
g =4

Subgroup Structure of q. There appear to be no requirements for subgroup order
g other than being prime and of size |p| — 1. This requirement is widely accepted and
in line with the approach used by NIST to verifiably generate DSA group parameters.
However, I would like to briefly pose the question of whether ¢ itself should be a safe

6 See e.g., https://datatracker.ietf.org/doc/html/rfc3526

" https://github.com/openssl/openssl/blob/e0fc7961c4fbd27577fb519d9aea2dc788742715/
crypto/dh/generate

15


https://datatracker.ietf.org/doc/html/rfc3526
https://github.com/openssl/openssl/blob/e0fc7961c4fbd27577fb519d9aea2dc788742715/crypto/dh/generate
https://github.com/openssl/openssl/blob/e0fc7961c4fbd27577fb519d9aea2dc788742715/crypto/dh/generate

prime by considering whether the subgroup structure of ¢ could ever be exploited for
unintended purposes.

For example, consider primes p,q,r in which p = 2¢+ 1 and ¢ = 2rs+ 1 and r is
small. There exists a subgroup G, C Z,, but there also exists a subgroup G, of the
exponent group Zg.

Suppose a player in the protocol selects an z € G, and computes y = g*. Here = can
be recovered by finding an & such that (y)* = g, i.e., an & € G, such that & = 1 mod q.
This can be found in O(4/r) exponentiations using, e.g., a baby-step/giant-step approach.

Successive exponentiations would still allow the retrieval of their product from the
exponent group in O(y/r) operations. Let 1, 9, ...,z € G, and y = ((((g)™)*2)...)"*.
The product x1 - z2 ...z mod ¢ would still have small order » and be recoverable from
y in O(y/r) exponentiations.

Since many of the zero-knowledge proofs combine exponentiation operations with
multiplication operations in Zj (resp. multiplications with additions in the exponent
group ZZ), it seems unlikely that this small exponent subgroup structure could be pre-
served or recovered toward realizing most attack goals (e.g., to break soundness). How-
ever, it may be worth considering the possibility of small subgroups of the exponent
group being used by colluding players to implement a subliminal/covert channel in the
election data set.

SP Response. Swiss Post reiterates that their computational assumptions reduce to
the DDH assumption, and therefore they do not see how small subgroups of ¢ could be
exploited, including by number-field sieves (NFS).

My Response. DDH assumes exponents are chosen independently and uniformly from
Zg. 1 am ultimately asking about what happens if a voter (or voters) intentionally vio-
late DDH assumptions by picking exponents not independently and/or not uniformly, for
example, by selecting from some small G, C Zj. At first glance, this may seem trivial-—a
voter could always pick a trivial exponent (e.g., 1 or 2) and expose their plaintext to
brute-force search. However, smaller subgroups of the exponent have a modestly more
interesting property: The product of arbitrarily many successive exponentiations of ex-
ponents drawn from G, can be recovered in O(y/r) < O(,/q), which is not the case for
arbitrarily many exponentiations of small exponents drawn from Zj.

I do not see an immediate way to exploit this in the Swiss Post system beyond using
it as a subliminal channel (which has not been addressed in the Swiss Post response).
Ultimately, Swiss Post’s appeal to DDH is necessary—privacy cannot be assured with out
it. The main goal of raising this question is simply to point to the existence of non-trivial
and evidently unnoticed algebraic structures and ask what could be the consequences if
DDH assumptions are maliciously deviated from.

ElGamal Parameter Selection. The arbitrary testing-only level should be eliminated
as it admits trivially insecure parameters (e.g. p = 5,q = 2, |p|=3, |q|=1, which is the 1-
bit security level). Purposefully weak parameters seemingly exist to offer efficient testing,
but it comes at the arguably unacceptable risk of accidental use in a production capacity.

16



As a general principle, cryptographic software should be robust in the presence of weak
parameters, i.e., not designed purposeful designed to admit weak parameters unless the
user remembers to use the correct security level.

Table 1 shows the anticipated approximate security levels of safe primes of various
lengths. Swiss Post’s default security level is 112 bits and the extended security level is
128 bits (see Table 5, primitives specification).

Allowed
p| | Security level | Swiss Post [ECRYPT|  NIST
3 1 bit testing-only] No No
829 |Broken (2020)|testing-only|  No No
1024 80 bits testing-onlyl No No
2048| 112 bits default No |No after 2029
3076| 128 bits extended Yes Yes

Table 1. Security level of the discrete logarithm problem (DLP) modulo safe primes p relative to
recommendations at various bit lengths |p|.

The characterization by Swiss Post of the 2048-bit prime p as the “default” security
level is somewhat misleading. ECRYPT recommends “new systems should use a minimum
p of 3072-bits” [14]. Similarly, NIST does not recommend using a 2048-bit p for any data
with a security lifetime past 2030, If the security life of Swiss Post election data extends
past 2030, then, according to NIST, “protection at a security strength of 112 bits will
not be sufficient” [1].

Furthermore, these standards only represent the minimal security levels, which may
not provide a sufficient security margin for an application as prominent as an online
public election.

Discrete logarithms in 795-bit safe prime groups have been accomplished in practice,®
and with the recent factorization of RSA-250,” discrete logarithms in a 829-bit safe prime
group are now feasible.

Finally, a higher level be selected for the extended security level. Ideally, the “extended
level” would be pegged to the 256-bit level, implying |p| = 15350. This would incur sig-
nificant performance reduction. However, the feasibility of this recommendation should
be assessed in the setting of an election’s one-time cost and not in the conventional net-
work security setting in which a server performs these computations on a continual basis.

Recommendations:
— The arbitrary testing-only security level be disallowed.

— The default 112-bit security level be disallowed.

8 https://caramba.loria.fr/d1p240-rsa240.txt
® https://lists.gforge.inria.fr/pipermail/cado-nfs-discuss/2020-February/001166.html

17


https://caramba.loria.fr/dlp240-rsa240.txt
https://lists.gforge.inria.fr/pipermail/cado-nfs-discuss/2020-February/001166.html

— The extended 128-bit level be made the default level.
— The 256-bit level be made the extended level.
— Articulate a minimum security horizon (in years) for election data to be non-decryptable.

SP Response A. They are working on code optimizations to speed up performance for
|p| = 3072-Dbits.

My Response. If performance is a higher priority than meeting the security standards
they themselves cite, why work in finite fields instead of elliptic curves?

SP Response B. The testing-only level was revised to |p| = 8n for postive integers
n > 0. The default and extended levels are unchanged.

My Response. Trivially weak parameters as small as p = 167, ¢ = 83 are still valid
in the testing-only level and it seems the risk of accidental (or intentional) deployment
outweighs SP’s unexplained need for optimally-fast (and optimally insecure) testing pa-
rameters.

ElGamal Operations. This section pertains to Sections 4.2-4.11 of the primitives
specification.

— Throughout the primitives specification, ElGamal secret keys and random factors are
specified as 7, sk € Z4, whereas the corresponding public key (or group element) is
specified as pk € G4. Although 0 € Z,, and y = ¢° = 1 mod p, which is an element
of Gy, it is not a generator of G,.

— This mismatch carries over to the primitive specification GenRandomlnteger() (see
Algorithm 3.1), which includes 0 in the codomain. If GenRandominteger() outputs
0, or if a malicious player simply selected 0 during key generation (or encryption),
Algorithm 4.2 would output an invalid public key ¢° = 1 mod p, which is not a
generator of Gy.

e SP Response: “Whether we shall exclude 0 as a secret key and, conversely, 1
as a public key was discussed with multiple experts in the past.” Junod argues'®
that 0 is a valid exponent of a generator of G, but goes on to make an inductive
argument along the lines of “if you remove 0, then why not 1, then why 2, then
why not...7”

e My Response: | accept the base case when a single exponentiation of g is per-
formed, but I fail to see the inductive step of this argument:

1. (((g*)*2)...)"k results in 1 if any z; is 0.

2. If the protocol ever applied successive exponentiations of a generator of G,
and if any exponent z; = 0, it would erase the contribution of the other
exponents & ;.

10 nttps://gitlab.com/swisspost-evoting/crypto-primitives/crypto-primitives/-/issues/7

18


https://gitlab.com/swisspost-evoting/crypto-primitives/crypto-primitives/-/issues/7

3. This is not true of exponents z > 0.

Algorithm 5.6, for example, implicitly acknowledges this fact by ensuring elements
of Pedersen commitment keys are generators of G, i.e., in G,\{1}.

— Algorithm 4.6 is explained as an algorithm that “exponentiates the ciphertext.” A
more descriptive title would be “exponentiates each ciphertext element by an expo-
nent a.”

— Explain/define the * symbology in Algorithm 4.11.

Mixnet. Due to time, I was unable to closely examine the Bayer-Groth specification in
Section 5 of the primitives specification. I do, however, have a few brief comments:

— What is the design rationale for using mixnets as opposed to, say, homomorphic
tallying? My sense is that the voting systems of the respective cantons can not be
implemented using the latter approach, however, this appears not to have been ad-
dressed in the documentation. Because the cryptography of the Swiss Post system is
so involved, a more explicit case should be made for its necessity.

o SP Response: “Switzerland has complex electoral models. Every canton has dif-
ferent election laws, and an election event can comprise elections and referendums
on the Federal, Cantonal, and municipal levels - with different voters having dif-
ferent eligibility rights. Consequently, the counting process is often non-trivial ...
Therefore, verifiable mixnets are a much more appropriate design decision than
homomorphic tallying in our specific use case. We will add this clarification in
the next version of the crypto-primitives.”

— Why was the Bayer-Groth mixnet chosen in particular? I saw an efficiency argument
made in the documentation. However, this approach adds a lot of complexity, making
the primitives specification much more intricate (see, e.g., Algorithms 5.18-5.26).

— Section 5 claims “verifiable mixnets underpin most modern e-voting schemes.” Is there
a citation to a systematic literature review that supports this?

— Algorithms 5.1 says, “The public key is passed as context to all sub-arguments.”
Should this not be sub-functionalities?

e SP Response: The term “sub-arguments” is the correct. The Bayer-Groth proof
has a hierarchical structure of arguments.

¢ My Response: The source of my confusion appears to come from the overloading
of the term “argument.” Here, “argument” is being used in the context of a proof,
not as a parameter. I reexamined the document and confirm they are using it
consistently.

— Algorithm 5.4 line 5: The subscript of m;1,ffse; should be taken modulo N.

19



e SP Response: Since i € [0, N) and of fset € [0, N — i), then i + of fset < N
and a reduction is unnecessary.

— The verifiable generation of domain parameters (i.e., generators g, h) of the Pedersen
commitments in Algorithms 5.6 appears to be well structured and prevents finding
relationships between g, h.

Zero-Knowledge Proof Systems. The zero-knowledge proof systems in Section 6
follow the approach of Maurer, which is a slight adaptation and generalization of more
well-known proof systems (e.g., Schnoor, Chaum-Pedersen). In particular, the multi-
recipient nature of the Swiss Post ciphertext creates an additional conceptual barrier
when trying to draw a mental line between a single-recipient proof system as used in
other e-voting solutions (e.g., Chaum-Pederson as used in Helios/ElectionGuard).

I examined Algorithms 6.2-6.9 and checked for the following:

— Insufficient context passed into the Fiat-Shamir challenge, which could lead to attacks
such as those proposed by Bernhard et al. [2] which exploit degrees of freedom as a
result of insufficient dependence on pre-challenge values. However, I did not observe
any instances where the recursive hash had insufficient context.

— Working with invalid inputs could lead to overriding a proof’s soundness in instances
where the verifier function accepted a spurious proof, such as was done in Helios [6].
However, I was not able to find any instances where soundness could be broken, as-
suming all inputs are checked for the anticipated structure (e.g., group membership).
However, Line 1 of Algorithms 6.2, 6.5, and 6.8 invoke GenRandomInteger and Gen-
RandomVector functions, which are capable of returning 0, which may lead to invalid
inputs to subsequent functionalties.

If input values are not thoroughly checked, it may be possible for the proof verifying
algorithms to accept trivial inputs. For example, suppose the decryption proof in Algo-
rithm 6.2 were to allow the key pair pk = 1, sk = 0 as input. This is partially allowable
since the algorithm explicitly states sk € Z,, which includes the sk = 0 case, and 1 € G,
even though 1 is not a generator thereof.

Without loss of generality, assume the single-recipient ciphertext case. In the first
line, the prover could select b = 0, and compute response z < b+ e - sk. This would yield
z = 0 mod ¢ independently of all Fiat-Shamir challenges (i.e., recursive hash values) e
rendering the contribution of the Fiat-Shamir challenge effectively useless in the response
value z.

Nevertheless, the point remains that the group identity element (i.e., 1 in this setting)
should not be used as a base in an exponentiation operation.

Fortunately due to this proof’s particular design, this does not create an immedi-
ate or obvious risk to the proof’s soundess; the verifier tests for equality between the
prover’s claimed hash e and the verifier’s re-generated hash e’. Therefore cancelling out

20



the contribution of the hash e from response z is not, on its own, sufficient to break
soundness.

Alternatively, if the algorithm fails to guarantee that an input S is a generator of
Gy, a malicious prover could attempt to use a generator of Zj instead. Assuming the
Fiat-Shamir challenge ¢ was even, then 3¢ € G4, and the proof would accept the invalid
input. One application might be to create an accepting proof of an invalid an ElGamal
ciphertext (a € Gy, B ¢ G,) as was done, for example, to Helios [6].

— SP Response: Swiss Post expressed some confusion over this section (issues #133,
#134, #135).

— My Response: My point was simply that a group’s identity element is not a gener-
ator and should not be used as a base in an sequence of exponentiation operations.
However, I do not see any evidence this is happening in the proofs, so the point can
be disregarded.

Additional comments:

— Algorithms in Section 6 variously use ¢ as a function, and a value.

— Algorithm 6.7 Line 7 uses the notation z < b + e - (r,7’), which seems to mean
z=(by+e-r,by+e-r'), but should be clarified.

— Algorithm 6.9 Line 6: The variable e should be €’. ¢ is the asserted hash of the prover,
whereas 6.9 is computing €/, which is the has as computed by the verifier.

Recommendations:

The documentation should be modified to make it explicitly clear that ensuring an
Algorithm’s input has the correct form is required. This could be done, for example, by
using the “Ensure” keyword, such as is found in Algorithm 5.4, or the “assert” keyword
as is found in many programming languages, as long is it is made clear to the reader
that the algorithm explicitly fails and returns L if any assertion fails. Specifically:

— All instances of y € Z, in the documentation should be reexamined to see if an
element of Z; is required instead (i.e., if 0 should be excluded).

— All instances of z € G4 in the documentation should be reexamined to see whether
a generator of Gy is required instead (i.e., if 1 should be excluded).

— For all inputs requiring x to be a generator of G, assert:
e 2<x<p

e z9=1modp

*

q» assert:

— For all inputs requiring y to be in Z

21



e 1<y<yg

— All invocations of GenRandomlnteger(q) requiring the output to be in Zj should
disallow 0 as output.

— SP Response A: We want to avoid repeating group membership tests in every
algorithm.

— My Response: This is perfectly understandable for efficiency reasons, as long it is
unambiguously and prominently communicated to the reader how critical it is to only
ever work with verified parameters. If an Algorithm does not explicitly check, it must
make a trust assumption about the input. This trust assumption should be clearly
communicated so future developers cannot unknowingly admit invalid cryptographic
parameters. This may seem like a trivial point, but my experience suggests other-
wise. The industry has systematically overlooked parameter verification in discrete
logarithm implementations including in OpenSSL, GPG, Helios, TLS 1.2 (cf. [8]) and
even in the previous Scytl/Swiss Post implementation [11].

— SP Response B: Calculating the Jacobi symbol is usually more efficient than check-
ing that ¢ = 1 mod p.

— My response: Computing a Legendre, Jacobi, or Kronecker symbol would be more
efficient but is only correct in the specific case of safe primes.

A Brief Word about Quantum Computing. Recognizing that I only have access
to public information on the subject, my view is that an implementation of Shor’s algo-
rithm reaching quantum supremacys, i.e., capable of, or comparable to computing discrete
logarithms at |p| > 829-bits is highly unlikely in the next 10 years, and, in my estimation
of the balance of probabilities, is unlikely to be seen in our lifetimes.

Furthermore, I believe evidence of major advances in this area will become apparent
in the public sphere with enough horizon to cease use of the system before it could be
deployed against an active election. Of course, the threat to historical election data would
remain.

Nevertheless, the threat of quantum computing is only addressed at a glancing level
in the system specification: “quantum computer could break some of the mathematical
assumptions underpinning the Swiss Post Voting System.”

Recommendations:

— Provide a detailed description of which mathematical assumptions are broken by the
existence of a sufficiently large quantum computer.

— Describe which specific exploits could be made against the election if (a) the quan-
tum computer could execute the attack against an active election and (b) could be
executed against historical election data some years after.

22



SP Response: They accept the recommendation and will consider adding discussion to
future versions of the documentation.

9.3 Verifier Specification

This section pertains to the verifier specification document. Although this document
directly builds on the other documentation, I had difficulty forming a complete picture
of the verification. Much of the information (and intuition) is hidden inside recursive
vectors and algorithms making it difficult to reason about the sufficiency of the set of
checks.

Overall, the specification is well annotated but not very self-contained. The verifica-
tion algorithms (e.g., Verification 1.01) and supporting algorithms (e.g., Algorithm 3.1)
are ultimately top-level checks that unpack the input variables, calls one or more sub-
routines, and outputs the conjunction of returned truth values resembling, in essence,
polynomial-time reductions to a series of verification oracles.

— §1.2 of the verifier specification discusses the integrity verification category, which in-
cludes ensuring data elements “correspond to the specification” and are “all within the
specified ranges.” I interpret this to more broadly mean that data elements have the
correct form, i.e., not just the correct range, but correct type, anticipated member-
ship, etc.). This section does not really address the question of integrity verification
and the checks are not explicit or exhaustive (e.g., ensuring all elements have the
correct group membership).

— Throughout the verifier specification (and other documents) there is an improper
use of quotation marks. All instance of a quotations of the form ”quote” should be
corrected to “quote” (see e.g., Algorithm 3.1, line 5). This appears to be a IXTEX rep-
resentation issue. Instead of ' 'quote'"', use ~“quote'"'.

— §4.3 introduces the notion of secure logs. The explanation relies almost entirely on a
citation to Scytl’s prior work. What are the security goals of this approach? What is
the argument /proof?

— What is the purpose of a checkpoint log entry?
— What is the purpose of the encrypted key ESK and how is decryption verified?

— The HMAC and digital signature algorithms are fully specified in §4.3, but the en-
cryption algorithm is not.

— The indefinite article of “HMAC” should be an HMAC, not ¢« HMAC.

— §4.3 contains the following text: “HMAC: a HMAC of the log entry.” Throughout this
section, HMAC is being used as both a verb and an overloaded noun: to HMAC (as
in to invoke an HMAC function on an input), HMAC (as in the function itself), and
HMAC (as in the output of the HMAC function).

23



— HMAC is to a MAC as AES is to symmetric-key encryption. Recommend putting the
HMAC calls inside of explicit MAC _sign and MAC _ verify functions and referring to
the output of MAC _sign as a MAC tag. In this way, one can talk about verifying the
tag produced by MAC _sign, instead of HMACing the HMAC created by the HMAC.

— What key is used to create the checkpoint MAC tags?

— Since multiple keyed primitives are used in §4.3, recommend making every instance
of “key” explicit: e.g., symmetric encryption key (i.e., the one used to create the ESK,
the MAC key, the public signature verification key, the private signing key, etc.).

— Algorithms 4.5-4.7 list the MAC key as being a k € B3? implying a 256-bit security
level. This is mismatched with the specified default and extended security levels.

— There should be a mapping from the variables on Page 31 (LSK, ESK, PHMAX, etc.)
to the inputs to Algorithms 4.5-4.7.

— Algorithm 4.7 suggests the modulus of a public RSA signature verification key is a
value m € P. Rather, the modulus is an integer n € P x P. This fact, however, cannot
be checked by the verifier.

10 Compliance with protocol requirements

Section 2.14 of the OEV addresses requirements for mathematical proofs establishing
the protocol’s compliance with the OEV’s other requirements.

2.14.1 One symbolic and one cryptographic proof must demonstrate that the cryp-
tographic protocol meets the requirements in Numbers 2.1-2.12.

Due to time, I did not examine the proofs of compliance made in the protocol specifica-
tion.

2.14.2: The proofs must directly refer to the protocol description that forms the
basis for system development.

Due to time, I did not examine the proofs of compliance made in the protocol specifica-
tion.

2.14.83: The proofs relating to basic cryptographic components may be provided
according to generally accepted security assumptions (e.g. ‘random oracle model’,
‘decisional Diffie-Hellman assumption’, ‘Fiat-Shamir heuristic’)

The cryptographic proofs in the primitives specification document (especially the Zero-
Knowledge proofs in §6) and the cryptographic building blocks in the protocol speci-
fication (§3-9) are consistent with generally accepted security assumptions and should
generally be comprehensible and recognizable to an individual with a background in

cryptography.

24



References

1.

2.

10.

11.

12.

13.

14.

E. Barker and A. Roginsky. Transitioning the use of cryptographic algorithms and key lengths.
NIST Special Publication 800-181A Rev. 2, 2019.

D. Bernhard, O. Pereira, and B. Warinschi. How not to prove yourself: Pitfalls of the fiat-shamir
heuristic and applications to helios. In International Conference on the Theory and Application of
Cryptology and Information Security, pages 626—643. Springer, 2012.

R. Carback, D. Chaum, J. Clark, J. Conway, A. Essex, P. S. Herrnson, T. Mayberry, S. Popoveniuc,
R. L. Rivest, E. Shen, et al. Scantegrity ii municipal election at takoma park: The first e2e binding
governmental election with ballot privacy. 2010.

. A. Cardillo, N. Akinyokun, and A. Essex. Online voting in ontario municipal elections: A conflict

of legal principles and technology? In International Joint Conference on Electronic Voting, pages
67-82. Springer, 2019.

A. Cardillo and A. Essex. The threat of ssl/tls stripping to online voting. In International Joint
Conference on Electronic Voting, pages 35-50. Springer, 2018.

N. Chang-Fong and A. Essex. The cloudier side of cryptographic end-to-end verifiable voting: a
security analysis of helios. In Proceedings of the 32nd Annual Conference on Computer Security
Applications, pages 324-335, 2016.

C. Culnane, M. Eldridge, A. Essex, and V. Teague. Trust implications of ddos protection in online
elections. In International Joint Conference on Electronic Voting, pages 127-145. Springer, 2017.
K. Dorey, N. Chang-Fong, and A. Essex. Indiscreet logs: Diffie-hellman backdoors in tls. In Network
and Distributed System Security Symposium (NDSS), 2017.

M. Dworkin. Recommendation for block cipher modes of operation: Galois/counter mode (gcm)
and gmac. NIST Special Publication 800-38-D, 2007.

R. Haenni, R. Koenig, P. Locher, and E. Dubuis. Chvote protocol specification, version 3.2. In
TACR e-print archive, 2020.

T. Haines, S. J. Lewis, O. Pereira, and V. Teague. How not to prove your election outcome. In 2020
IEEE Symposium on Security and Privacy (SP), pages 644-660, 2020.

J. A. Halderman and V. Teague. The new south wales ivote system: Security failures and verification
flaws in a live online election. In International conference on e-voting and identity, pages 35-53.
Springer, 2015.

E. Moher, J. Clark, and A. Essex. Diffusion of voter responsibility: Potential failings in e2e voter
receipt checking. USENIX Journal of Election Technology and Systems JETS, 1:1-17, 2014.

N. Smart et al. Algorithms, key size and protocols report (d5.4). ECRYPT-CSA H2020-1CT-201/4
— Project 645421, 2018.

25



A Restrictions and Limitations

Except for the issues raised by Teague et al. [11] in 2019, I had no prior familiarity with
the Swiss Post system. The totality of documentation falling under Scope 1 (Cryptog-
raphy) was extensive. Due to limited time available to conduct the analysis, therefore, I
could not fully examine all aspects of the system (as noted throughout).

B Author Bio

Aleksander Essex is an associate professor of software engineering at Western Uni-
versity in Canada and associate chair (graduate) of the Department of Electrical and
Computer Engineering. He holds a Ph.D. in Computer Science from the University of
Waterloo (2012).

His research specializes in cybersecurity and applied cryptography with a focus on
election technology. He has numerous publications on e-voting security and cryptographic
end-to-end election verification (E2E-V). He was one of the principal members of the
Scantegrity project, which ran the first fully E2E-V election in Takoma Park, Maryland,
in 2009-11. His cybersecurity study of e-voting in the 2018 Ontario Municipal Election
won the best paper award at E-Vote-ID in 2019.

26



	Summary of Findings
	Key Versions of this Report
	Introduction
	General Impressions.
	Structure of This Report
	Key Recommendations

	Scope of Engagement
	List of Documents Examined
	Individual verifiability
	Universal verifiability
	Ballot secrecy
	Authentication
	Proof soundness
	Definitions and Descriptions
	System Specification
	Primitives Specification
	Verifier Specification

	Compliance with protocol requirements
	Restrictions and Limitations
	Author Bio

